期刊文献+
共找到2,146篇文章
< 1 2 108 >
每页显示 20 50 100
Preparation and Optimization of Porous Membrane Electrodes via Gradient Coating in Hydrogen Fuel Cell 被引量:2
1
作者 Gu Xianrui Wu Yuchao +1 位作者 Wang Houpeng Rong Junfeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第3期1-8,共8页
Fuel cells are considered to be one of the ideal alternatives to traditional fossil energy conversion devices.Membrane electrodes are the core components in the hydrogen fuel cells.Our work reported the synthesis of t... Fuel cells are considered to be one of the ideal alternatives to traditional fossil energy conversion devices.Membrane electrodes are the core components in the hydrogen fuel cells.Our work reported the synthesis of the Pt/C catalysts with different Pt loading,and by changing the Nafion content,hot pressing temperature and hot pressing pressure,the catalyst coated membrane(CCM)spraying process was optimized.Moreover,the three-dimensional structure model of the single battery membrane electrode was studied quantitatively,and the porous membrane electrode with gradient distribution was fabricated under optimized processing conditions,with excellent electrical performance. 展开更多
关键词 hydrogen fuel cell membrane electrode Pt/C catalyst polarization curve power density single cell test
下载PDF
Design and Key Technology of Oil-Free Centrifugal Air Compressor for Hydrogen Fuel Cell 被引量:3
2
作者 Hongjie Zhang Wenfei Yu Wei Hua 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第1期11-19,共9页
For a 120 kW hydrogen fuel cell system,a centrifugal air compressor with fixed power of 22 kW fuel cell is designed.Firstly,the theoretical calculation is carried out for the aerodynamic characteristics of a ultra-hig... For a 120 kW hydrogen fuel cell system,a centrifugal air compressor with fixed power of 22 kW fuel cell is designed.Firstly,the theoretical calculation is carried out for the aerodynamic characteristics of a ultra-high-speed permanent magnet synchronous motor,an air compressor,and an aerodynamic foil bearing.Then,a prototype is trial-produced and a related test bench is built for test verification.Finally,both the simulation and test results indicate that the designed centrifugal air compressor meets the overall requirements of the hydrogen fuel cell system,and the relevant conclusions provide both theoretical and experimental references for the subsequent series development and design of the centrifugal air compressor. 展开更多
关键词 hydrogen fuel cell Centrifugal air compressor Ultra-High speed permanent magnet synchronous motor Compressor impeller Air pressure foil bearing
下载PDF
Performance assessment of a spiral methanol to hydrogen fuel processor for fuel cell applications 被引量:2
3
作者 Foad Mehri Majid Taghizadeh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期526-533,共8页
A novel design of plate-type microchannel reactor has been developed for fuel cell-grade hydrogen production.Commercial Cu/Zn/Al2O3 was used as catalyst for the reforming reaction,and its effectiveness was evaluated o... A novel design of plate-type microchannel reactor has been developed for fuel cell-grade hydrogen production.Commercial Cu/Zn/Al2O3 was used as catalyst for the reforming reaction,and its effectiveness was evaluated on the mole fraction of products,methanol conversion,hydrogen yield and the amount of carbon monoxide under various operating conditions.Subsequently,0.5 wt% Ru/Al2O3 as methanation catalyst was prepared by impregnation method and coupled with MSR step to evaluate the capability of methanol processor for CO reduction.Based on the experimental results,the optimum conditions were obtained as feed flow rate of 5mL/h and temperature of 250℃,leading to a low CO selectivity and high H2 yield.The designed reformer with catalyst coated layer was compared with the conventional packed bed reformer at the same operating conditions.The constructed fuel processor had a good performance and excellent capability for on-board hydrogen production. 展开更多
关键词 spiral fuel processor hydrogen fuel cell methanol steam reforming
下载PDF
Numerical Study on the Hydrogen Fueled SI Engine Combustion Optimization through a Combined Operation of DI and PFI Strategies
4
作者 Medhat Elkelawy Hagar Alm-Eldin Bastawissi 《Energy and Power Engineering》 2013年第8期513-522,共10页
As the practicability of a hydrogen-fueled economy emerges, intermediate technologies would be necessary for the transition between hydrocarbon fueled internal combustion engines and hydrogen powered fuel cells. In th... As the practicability of a hydrogen-fueled economy emerges, intermediate technologies would be necessary for the transition between hydrocarbon fueled internal combustion engines and hydrogen powered fuel cells. In the present study, the hydrogen engine efficiency and the load control are the two main parameters that will be improved by using the combined operation of in-cylinder direct fuel injection (DI) and port fuel injection (PFI) strategies to obtain maximum engine power outputs with acceptable efficiency equivalent to gasoline engines. Wide open throttle (WOT) operation has been used to take advantage of the associated increase in engine efficiency, in which the loads have been regulated with mixture richness (qualitative control) instead of volumetric efficiency (quantitative control). The capabilities of a 3D-CFD code have been developed and employed to simulate the whole engine physicochemical process which includes the hydrogen injection through the intake manifold (PFI) and/or the hydrogen DI in the engine compression stroke. Conditions with simulated PFI, PFI + DI and DI have been analyzed to study the effects of mixture preparation behaviors on the hydrogen ignition and its flame propagation inside the engine combustion chamber. Numerically, the CFD code has been intensively validated against experimental engine data which provided remarkable agreement in terms of in-cylinder pressure history evaluation. 展开更多
关键词 hydrogen fuel SI Engine PORT fuel INJECTION Direct INJECTION Wide Open THROTTLE Kiva-3vr2
下载PDF
Hydrogen Smart-Grids: Smart Metering of Electricity from Hydrogen Fuel Cells
5
作者 Gopalakrishnan Kumar Serhan Demirci Chiu-Yue Lin 《Journal of Sustainable Bioenergy Systems》 2013年第2期160-162,共3页
In the last decade, increasing applications of information technology (IT) within power industry has become a significant reality. As distributed power networks are gaining importance and renewables are getting a bigg... In the last decade, increasing applications of information technology (IT) within power industry has become a significant reality. As distributed power networks are gaining importance and renewables are getting a bigger ratio within energy production, Smart Grid applications have become essential, especially due to the intermittent nature of renewable energy resources. Smart Grid is a sustainable energy system that measures, checks, and controls the generation, transmission, and consumption of electrical energy in grids on all voltage levels. Smart Grid experts are driving forward the development of effective communication and information technologies for the build-up of intelligent power supply networks. Examples of these are control systems for the realization of virtual power plants, intelligent consumer data acquisition systems, and smart distribution management systems. Fuel cell-based hydrogen electricity, in comparison to other renewable energy sources, is more stable and predictable. Yet hydrogen power and smart-grids have many application points, mainly as means of energy storage. This study claims that hydrogen energy and smart-grids could also engage through an appliance of IT managed metering of hydrogen power production. Smart metering and management of hydrogen fuel cells would enable advanced planning of short-to-mid-term power productions and thus foster use of hydrogen power within distributed networks, as local community or industrial applications. 展开更多
关键词 Smart Grids fuel Cell-Based hydrogen ELECTRICITY VIRTUAL Power PLANTS
下载PDF
PtCu subnanoclusters epitaxial on octahedral PtCu/Pt skin matrix as ultrahigh stable cathode electrocatalysts for room-temperature hydrogen fuel cells 被引量:3
6
作者 Fengling Zhao Lirong Zheng +5 位作者 Qiang Yuan Qinghua Zhang Tian Sheng Xiaotong Yang Lin Gu Xun Wang 《Nano Research》 SCIE EI CSCD 2023年第2期2252-2258,共7页
Achieving stable surface structures of metal catalysts is an extreme challenge for obtaining long-term durability and meeting industrial application requirements.We report a new class of metal catalyst,Pt-rich PtCu he... Achieving stable surface structures of metal catalysts is an extreme challenge for obtaining long-term durability and meeting industrial application requirements.We report a new class of metal catalyst,Pt-rich PtCu heteroatom subnanoclusters epitaxially grown on an octahedral PtCu alloy/Pt skin matrix(PtCu1.60),for the oxygen reduction reaction(ORR)in an acid electrolyte.The PtCu1.60/C exhibits an 8.9-fold enhanced mass activity(1.42 A·mgPt^(−1))over that of commercial Pt/C(0.16 A·mgPt^(−1)).The PtCu1.60/C exhibits 140,000 cycles durability without activity decline and surface PtCu cluster stability owing to unique structure derived from the matrix and epitaxial growth pattern,which effectively prevents the agglomeration of clusters and loss of near-surface active sites.Structure characterization and theoretical calculations confirm that Pt-rich PtCu clusters favor ORR activity and thermodynamic stability.In room-temperature polymer electrolyte membrane fuel cells,the PtCu1.60/C shows enhanced performance and delivers a power density of 154.1/318.8 mW·cm^(−2)and 100 h/50 h durability without current density decay in an air/O_(2)feedstock. 展开更多
关键词 epitaxial growth core–shell nanostructure PtCu alloy oxygen reduction reaction hydrogen fuel cells
原文传递
Analysis of the Influence of Geometrical Parameters on the Performance of a Proton Exchange Membrane Fuel Cell
7
作者 Guodong Zhang Huifang Tao +4 位作者 Da Li Kewei Chen Guoxiang Li Shuzhan Bai Ke Sun 《Fluid Dynamics & Materials Processing》 EI 2024年第1期219-237,共19页
A suitable channel structure can lead to efficient gas distribution and significantly improve the power density of fuel cells.In this study,the influence of two channel design parameters is investigated,namely,the rat... A suitable channel structure can lead to efficient gas distribution and significantly improve the power density of fuel cells.In this study,the influence of two channel design parameters is investigated,namely,the ratio of the channel width to the bipolar plate ridge width(i.e.,the channel ridge ratio)and the channel depth.The impact of these parameters is evaluated with respect to the flow pattern,the gas composition distribution,the temperature field and the fuel cell output capability.The results show that a decrease in the channel ridge ratio and an increase in the channel depth can effectively make the distributions of velocity,temperature and concentration more uniform in each channel and improve the output capability of the fuel cell.An increase in the channel ridge ratio and depth obviously reduces the flow resistance and improves the flow characteristics. 展开更多
关键词 hydrogen fuel cell bipolar plate flow channel multiphysics coupling
下载PDF
The Use of Hydrogen as a Fuel for Inland Waterway Units 被引量:3
8
作者 M. Morsy El Gohary Yousri M. A. Welaya AmrAbdelwahabSaad 《Journal of Marine Science and Application》 2014年第2期212-217,共6页
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing... Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained. 展开更多
关键词 sustainable alternative energy sources hydrogen fuel hydrogen properties hydrogen production hydrogen storage costanalysis inland waterway units
下载PDF
Energy Security Planning for Hydrogen Fuel Cell Vehicles in Large-Scale Events:A Case Study of Beijing 2022 Winter Olympics 被引量:1
9
作者 Pinxi Wang Qing Xue +3 位作者 Jun Yang Hao Ma Yilun Li Xu Zhao 《Automotive Innovation》 EI CSCD 2022年第2期209-220,共12页
Energy security planning is fundamental to safeguarding the traffic operation in large-scale events.To guarantee the promo-tion of green,zero-carbon,and environmental-friendly hydrogen fuel cell vehicles(HFCVs)in larg... Energy security planning is fundamental to safeguarding the traffic operation in large-scale events.To guarantee the promo-tion of green,zero-carbon,and environmental-friendly hydrogen fuel cell vehicles(HFCVs)in large-scale events,a five-stage planning method is proposed considering the demand and supply potential of hydrogen energy.Specifically,to meet the requirements of the large-scale events’demand,a new calculation approach is proposed to calculate the hydrogen amount and the distribution of hydrogen stations.In addition,energy supply is guaranteed from four aspects,namely hydrogen produc-tion,hydrogen storage,hydrogen delivery,and hydrogen refueling.The emergency plan is established based on the overall support plan,which can realize multi-dimensional energy security.Furthermore,the planning method is demonstrative as it powers the Beijing 2022 Winter Olympics as the first“green”Olympic,providing both theoretical and practical evidence for the energy security planning of large-scale events.This study provides suggestions about ensuring the energy demand after the race,broadening the application scenarios,and accelerating the application of HFCVs. 展开更多
关键词 hydrogen fuel cell vehicles Large-scale events Energy security plan hydrogen calculation Layout of hydrogen refueling station
原文传递
Small proton exchange membrane fuel cell power station by using bio-hydrogen
10
作者 刘志祥 毛宗强 +1 位作者 王诚 任南琪 《电池》 CAS CSCD 北大核心 2006年第5期362-363,共2页
关键词 proton exchange membrane fuel cell BIO-hydrogen
下载PDF
Passive electrochemical hydrogen recombiner for hydrogen safety systems:prospects
11
作者 A.V.Avdeenkov D.G.Bessarabov D.G.Zaryugin 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第6期215-224,共10页
This paper presents the concept of a passive electrochemical hydrogen recombiner(PEHR).The reaction energy of the recombination of hydrogen and oxygen is used as a source of electrical energy according to the operatin... This paper presents the concept of a passive electrochemical hydrogen recombiner(PEHR).The reaction energy of the recombination of hydrogen and oxygen is used as a source of electrical energy according to the operating principle for hydrogen fuel cells to establish forced circulation of the hydrogen mixture as an alternative to natural circulation(as is not utilized in conventional passive autocatalytic hydrogen recombiners currently used in nuclear power plants(NPPs)).The proposed concept of applying the physical operation principles of a PEHR based on a fuel cell simultaneously increases both productivity in terms of recombined hydrogen and the concentration threshold of flameless operation(the‘ignition’limit).Thus,it is possible to reliably ensure the hydrogen explosion safety of NPPs under all conditions,including beyond-design accidents.An experimental setup was assembled to test a laboratory sample of a membrane electrode assembly(MEA)at various hydrogen concentrations near the catalytic surfaces of the electrodes,and the corresponding current–voltage characteristics were recorded.The simplest MEA based on the Advent P1100W PBI membrane demonstrated stable performance(delivery of electrical power)over a wide range of hydrogen concentrations. 展开更多
关键词 Recombiner Catalytic ignition hydrogen explosion safety hydrogen fuel cell Membrane electrode assembly
下载PDF
Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world 被引量:12
12
作者 Han HAO Zhexuan MU +1 位作者 Zongwei LIU Fuquan ZHAO 《Frontiers in Energy》 SCIE CSCD 2018年第3期466-480,共15页
Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taki... Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taking China as an example, the unique advantages for China to deploy fuel cell vehicles are reviewed. Subsequently, this paper analyzes the greenhouse gas (GHG) emissions from 19 fuel cell vehicle utilization pathways by using the life cycle assessment approach. The results show that with the current grid mix in China, hydrogen from water electro- lysis has the highest GHG emissions, at 3.10 kgCO2/km, while by-product hydrogen from the chlor-alkali industry has the lowest level, at 0.08 kgCO2/krn. Regarding hydrogen storage and transportation, a combination of gas-hydrogen road transportation and single compression in the refueling station has the lowest GHG emissions. Regarding vehicle operation, GHG emissions from indirect methanol fuel cell are proved to be lower than those from direct hydrogen fuel cells. It is recommended that although fuel cell vehicles are promising for the developing world in reducing GHG emissions, the vehicle technology and hydrogen production issues should be well addressed to ensure the life-cycle low-carbon performance. 展开更多
关键词 hydrogen fuel cell vehicle life cycle assessment energy consumption greenhouse gas (GHG) emissions China
原文传递
Comparative study on pressure swing adsorption system for industrial hydrogen and fuel cell hydrogen 被引量:2
13
作者 Jian Chen Lingbing Bu Yingqi Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期112-119,共8页
In order to improve the design of PSA system for fuel cell hydrogen production,a non-isothermal model of eight-bed PSA hydrogen process with five-component(H_(2)/N_(2)/CH_(4)/CO/CO_(2)=74.59%/0.01%/4.2%/2.5%/18.7%(vol... In order to improve the design of PSA system for fuel cell hydrogen production,a non-isothermal model of eight-bed PSA hydrogen process with five-component(H_(2)/N_(2)/CH_(4)/CO/CO_(2)=74.59%/0.01%/4.2%/2.5%/18.7%(vol))four-stage pressure equalization was developed in this article.The model adopts a composite adsorption bed of activated carbon and zeolite 5 A.In this article,pressure variation,temperature field and separation performance are stimulated,and also effect of providing purge(PP)differential pressure and the ratio of activated carbon to zeolite 5 A on separation performance in the process of producing industrial hydrogen(CO content in hydrogen is 10μl·L^(-1))and fuel cell hydrogen(CO content is 0.2μl·L^(-1))are compared.The results show that Run 3,when the CO content in hydrogen is 10μl·L^(-1),the hydrogen recovery is 89.8%,and the average flow rate of feed gas is 0.529 mol·s^(-1);When the CO content in hydrogen is 0.2μl·L^(-1),the hydrogen recovery is 85.2%,and the average flow rate of feed gas is 0.43 mol·s^(-1).With the increase of PP differential pressure,hydrogen recovery first increases and then decreases,reaching the maximum when PP differential pressure is 0.263 MPa;With the decrease of the ratio of activated carbon to zeolite 5 A,the hydrogen recovery increases gradually.When the CO content in hydrogen is 0.2μl·L^(-1) the hydrogen recovery increases more obviously,from 83.96%to 86.37%,until the ratio of activated carbon to zeolite 5 A decreases to 1.At the end of PP step,no large amount of CO_(2) in gas or solid phase enters the zeolite 5 A adsorption bed,while when the CO content in hydrogen is 10μl·L^(-1),and the ratio of carbon to zeolite 5 A is less than 1.4,more CO_(2) will enter the zeolite 5 A bed. 展开更多
关键词 Pressure swing adsorption hydrogen fuel cell hydrogen Industrial hydrogen Numerical simulation
下载PDF
A new cathode using CeO_2/MWNT for hydrogen peroxide synthesis through a fuel cell 被引量:2
14
作者 徐夫元 宋天顺 +3 位作者 徐源 陈英文 祝社民 沈树宝 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第1期128-133,共6页
Catalyst using CeO2/MWNT(multi-walled carbon nanotube) was prepared by chemical deposition method and was applied to prepare the cathode of fuel cell for hydrogen peroxide synthesis.Effect of catalyst loading, flow ... Catalyst using CeO2/MWNT(multi-walled carbon nanotube) was prepared by chemical deposition method and was applied to prepare the cathode of fuel cell for hydrogen peroxide synthesis.Effect of catalyst loading, flow rate of aqueous solution, and KOH concentration on hydrogen peroxide synthesis were investigated.Experimental results indicated that hydrogen peroxide concentration approached 275 mmol/L given 25% of CeO2/MWNT, 18 ml/h of aqueous solution, and 5 mol/L of KOH concentration.Moreover, the reaction mechanism was further discussed.The results indicated that MWNT and cerium oxide were the synergism to produce hydrogen peroxide.Increase of KOH concentration not only reduced the apparent cell resistance but also increased the open-circuit voltage. 展开更多
关键词 hydrogen peroxide fuel cell MWNT cerium oxide rare earths
下载PDF
Synergistic effect of polyoxometalate solution and TiO_2 under UV irradiation to catalyze formic acid degradation and their application in the fuel cell and hydrogen evolution 被引量:1
15
作者 Congmin Liu Zhe Zhang +3 位作者 Wei Liu Xu Du Shi Liu Yong Cui 《Green Energy & Environment》 SCIE 2017年第4期436-441,共6页
The synergistic effect of H_3PMo_(12)O_(40) or H_3PW_(12)O_(40) polyoxometalate solution(POM) and TiO_2 to catalyze formic acid oxidation was investigated. Under UV irradiation, hole and electron were photogenerated b... The synergistic effect of H_3PMo_(12)O_(40) or H_3PW_(12)O_(40) polyoxometalate solution(POM) and TiO_2 to catalyze formic acid oxidation was investigated. Under UV irradiation, hole and electron were photogenerated by TiO_2. Formic acid was oxided by the photogenerated hole and photogenerated electron was transferred to reduce polyoxometalate. With this design, formic acid can be converted into electricity in the fuel cell and hydrogen can be generated in the electrolysis cell without noble metal catalyst. Unlike other noble metal catalysts applied in the fuel cells and electrolysis cell, POM and TiO_2 are stable and low cost. The maximum output power density of liquid formic acid fuel cell after 12 h UV irradiation is 5.21 mW/cm^2 for phosphmolybdic acid and 22.81 m W/cm^2 for phosphotungstic acid respectively. The applied potential for the hydrogen evolution is as low as 0.8 V for phosphmolybdic acid and 0.6 V for phosphotungstic acid. 展开更多
关键词 TiO2 UV Polyoxometalate solution(POM) fuel cell hydrogen evolution
下载PDF
Amine axial ligand-coordinated cobalt phthalocyanine-based catalyst for flow-type membraneless hydrogen peroxide fuel cell or enzymatic biofuel cell
16
作者 Heeyeon An Hyewon Jeon +2 位作者 Jungyeon Ji Yongchai Kwon Yongjin Chung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期463-471,共9页
In this study,an amine-coordinated cobalt phthalocyanine(CoPc)-based anodic catalyst was fabricated by a facile process,to enhance the performance of hydrogen peroxide fuel cells(HPFCs) and enzymatic biofuel cells(EBC... In this study,an amine-coordinated cobalt phthalocyanine(CoPc)-based anodic catalyst was fabricated by a facile process,to enhance the performance of hydrogen peroxide fuel cells(HPFCs) and enzymatic biofuel cells(EBCs).For this purpose,polyethyleneimine(PEI) was added onto the reduced graphene oxide and CoPc composite(RGO/CoPc) to create abundant NH2 axial ligand groups,for anchoring the Co core within the CoPc.Owing to the PEI addition,the onset potential of the hydrogen peroxide oxidation reaction was shifted by 0.13 V in the negative direction(0.02 V) and the current density was improved by 1.92 times(1.297 mA cm^(-2)),compared to those for RGO/CoPc(0.15 V and 0.676 mA cm^(-2),respectively),due to the formation of donor-acceptor dyads and the prevention of CoPc from leaching out.The biocatalyst using glucose oxidase(GOx)([RGO/CoPc]/PEI/GOx) showed a better onset potential and catalytic activity(0.15 V and 318.7 μA cm^(-2)) than comparable structures,as well as significantly improved operational durability and long-term stability.This is also attributed to PEI,which created a favorable microenvironment for the enzyme.The maximum power densities(MPDs) and open-circuit voltages(OCVs) obtained for HPFCs and EBCs using the suggested catalyst were 105.2±1.3 μW cm^(-2)(0.317±0.003 V) and 25.4±0.9 μW cm^(-2)(0.283±0.007 V),respectively.This shows that the amine axial ligand effectively improves the performance of the actual driving HPFCs and EBCs. 展开更多
关键词 hydrogen peroxide fuel cell Enzymatic biofuel cell Amine axial ligand hydrogen peroxide oxidation reaction MEMBRANELESS
下载PDF
Paper-like Microfibrous Nickel Catalyst for Hydrogen Production via NH_3 Decomposition in Fuel Cell Applications
17
作者 Yong LU Hong WANG Ye LIU Ming Yuan HE 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第10期1397-1400,共4页
A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell po... A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell power H2 via NH3 decomposition with a conversion of 97% at 750 ℃ in a bed of 0.6 cm^3. 展开更多
关键词 Microfibrous catalyst NICKEL hydrogen production AMMONIA fuel cells.
下载PDF
Organic Fuel Synthesis from Atmospheric Carbon Dioxide and Hydrogen Produced from Water by Electrolysis
18
作者 David JOHNSTON 《电工电能新技术》 CSCD 北大核心 2009年第3期6-10,66,共6页
Synthesis of organic fuels from carbon dioxide and hydrogen is analysed,in terms of energy recovery efficiency,and the required energy input for electrolysis of water.This electrical energy is related to the thermal e... Synthesis of organic fuels from carbon dioxide and hydrogen is analysed,in terms of energy recovery efficiency,and the required energy input for electrolysis of water.This electrical energy is related to the thermal energy required in a power station.A method is described to recover heat from energy-producing reactions in the fuel synthesis process,which can then be used to reduce the electrical energy requirement for electrolysis.By co-locating the fuel synthesis plant with a thermal power station,primary(thermal) energy can be used to produce high temperature steam,with a lower electrical requirement for electrolytic production of hydrogen.This can make more efficient use of the primary energy than a thermodynamic engine.Comparison is made with alternative fuels,in terms of energy budget,sustainability,carbon dioxide emissions,etc.The energy security benefits of advanced fuel synthesis are also identified. 展开更多
关键词 燃料 二氧化碳 电解
下载PDF
氢能技术及其在车用领域应用现状综述 被引量:2
19
作者 楼狄明 赵克秦 +3 位作者 石秀勇 张允华 房亮 刘登程 《内燃机与配件》 2024年第7期140-143,共4页
化石燃料的快速消耗迫切地需要寻找绿色清洁的替代能源,氢能是一种来源丰富、绿色低碳、应用广泛的二次能源,具有高能量、无污染的特性,是当下重要的工业原料。本文较为全面地分析了氢能的制取与储存,并且围绕氢能在车用领域的应用,因... 化石燃料的快速消耗迫切地需要寻找绿色清洁的替代能源,氢能是一种来源丰富、绿色低碳、应用广泛的二次能源,具有高能量、无污染的特性,是当下重要的工业原料。本文较为全面地分析了氢能的制取与储存,并且围绕氢能在车用领域的应用,因为在碳峰值和碳中和的背景下,内燃机行业的发展正面临着最好的转型机遇。加快氢发动机关键技术的研发和应用已成为世界各国政府和各大汽车企业的重要战略。本文对比了氢燃料电池与氢燃料内燃机的特点,对未来氢能源利用的产业化前景进行了分析。 展开更多
关键词 氢能 低碳 氢能生产储存 氢燃料电池 氢燃料内燃机
下载PDF
Relation between Gamma Decomposition and Powder Formation of <i>γ</i>-U8Mo Nuclear Fuel Alloys via Hydrogen Embrittlement and Thermal Shock
20
作者 Fábio Branco Vaz de Oliveira Delvonei Alves de Andrade 《World Journal of Nuclear Science and Technology》 2014年第4期177-188,共12页
Gamma uranium-molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR), due to their acceptable performance under irradiation. Regarding their usage as ... Gamma uranium-molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR), due to their acceptable performance under irradiation. Regarding their usage as a dispersion phase in aluminum matrix, it is necessary to convert the as cast structure into powder, and one of the techniques considered for this purpose is the hydration-dehydration (HDH). This paper shows that, under specific conditions of heating and cooling, γ-UMo fragmentation occurs in a non-reactive predominant mechanism, as shown by the curves of hydrogen absorption/desorption as a function of time and temperature. Our focus was on the experimental results presented by the addition of 8% weight molybdenum. Following the production by induction melting, samples of the alloys were thermally treated under a constant flow of hydrogen for temperatures varying from 500°C to 600°C and for times of 0.5 to 4 h. It was observed that, even without a massive hydration-dehydration process, the alloys fragmented under specific conditions of thermal treatment during the thermal shock phase of the experiments. Also, it was observed that there was a relation between absorption and the rate of gamma decomposition or the gamma phase stability of the alloy. 展开更多
关键词 Nuclear fuel ALLOYS hydrogen EMBRITTLEMENT Thermal Shock
下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部