期刊文献+
共找到64,271篇文章
< 1 2 250 >
每页显示 20 50 100
Volumetry of Hydrogen Micro-bubbles Dispersed in Water
1
作者 Koichi Jeremiah Aoki Shinpei Yamaguchi Jingyuan Chen 《材料科学与工程(中英文B版)》 2018年第1期13-20,共8页
关键词 氢分子 水泡 容量测定 分散 高锰酸盐 气体 浸透 体积
下载PDF
Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis 被引量:2
2
作者 Chao Wan Yu Liang +5 位作者 Liu Zhou Jindou Huang Jiapei Wang Fengqiu Chen Xiaoli Zhan Dang-guo Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期333-343,共11页
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ... The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond. 展开更多
关键词 Ammonia borane hydrogen generation HYDROLYSIS Cobalt phosphide nanosheets PHOTOCATALYSIS
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
3
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility hydrogen evolution reaction
下载PDF
Mg/MgO interfaces as efficient hydrogen evolution cathodes causing accelerated corrosion of additive manufactured Mg alloys:A DFT analysis 被引量:1
4
作者 Man-Fai Ng Kai Xiang Kuah +1 位作者 Teck Leong Tan Daniel John Blackwood 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期110-119,共10页
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl... The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium. 展开更多
关键词 MAGNESIUM Magnesium oxide Interface hydrogen evolution DFT
下载PDF
Electron-distribution control via Pt/NC and MoC/NC dual junction:Boosted hydrogen electro-oxidation and theoretical study 被引量:1
5
作者 Feng Zhou Xiaofeng Ke +8 位作者 Yihuang Chen Mei Zhao Yun Yang Youqing Dong Chao Zou Xi’an Chen Huile Jin Lijie Zhang Shun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期513-520,I0011,共9页
The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to ... The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO. 展开更多
关键词 hydrogen oxidation reaction Dual junctions CO-tolerance PLATINUM
下载PDF
Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction 被引量:1
6
作者 Jing Jin Xinyao Wang +4 位作者 Yang Hu Zhuang Zhang Hongbo Liu Jie Yin Pinxian Xi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期14-24,共11页
Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performan... Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy. 展开更多
关键词 hydrogen evolution reaction S vacancies NANOSHEET H Adsorption
下载PDF
Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents 被引量:1
7
作者 Xiaobin Zhang Aoqi Wang +1 位作者 Xingbao Wang Wenying Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期187-197,共11页
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz... The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms. 展开更多
关键词 Direct coal liquefaction Liquefaction solvents Process simulation hydrogen solubility
下载PDF
Geochemistry and origins of hydrogen-containing natural gases in deep Songliao Basin,China:Insights from continental scientific drilling 被引量:1
8
作者 Shuang-Biao Han Chao-Han Xiang +3 位作者 Xin Du Lin-Feng Xie Jie Huang Cheng-Shan Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期741-751,共11页
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl... The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas. 展开更多
关键词 Gas compositions Stable isotopes Gas origins hydrogen gas Songliao Basin
下载PDF
Electrochemical Hydrogen Charging on Corrosion Behavior of Ti-6Al-4V Alloy in Artificial Seawater 被引量:1
9
作者 Yanxin Qiao Yue Qin +5 位作者 Huiling Zhou Lanlan Yang Xiaojing Wang Zhengbin Wang Zhenguang Liu Jiasheng Zou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期296-308,共13页
This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ... This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions. 展开更多
关键词 Ti-6Al-4V alloy hydrogen charging Electrochemical corrosion Passive film
下载PDF
Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process 被引量:1
10
作者 Chong-Zheng Sun Yu-Xing Li +2 位作者 Hui Han Xiao-Yi Geng Xiao Lu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1369-1384,共16页
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ... Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow. 展开更多
关键词 hydrogen liquefaction Spiral wound heat exchanger Flow pattern transition Falling film flow
下载PDF
Recent progress in thermodynamic and kinetics modification of magnesium hydride hydrogen storage materials 被引量:1
11
作者 Yafei Liu Yusang Guo +3 位作者 Yaru Jiang Lizhuang Feng Yu Sun Yijing Wang 《Materials Reports(Energy)》 EI 2024年第1期3-22,共20页
Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen... Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials. 展开更多
关键词 Magnesium hydride Thermodynamics and kinetics Catalyst doping NANOSTRUCTURES hydrogenation and dehydrogenation
下载PDF
Boosting Hydrogen Storage Performance of MgH_(2) by Oxygen Vacancy-Rich H-V_(2)O_(5) Nanosheet as an Excited H-Pump 被引量:2
12
作者 Li Ren Yinghui Li +4 位作者 Zi Li Xi Lin Chong Lu Wenjiang Ding Jianxin Zou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期398-416,共19页
MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V... MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V_(2)O_(5) nanosheets(H-V_(2)O_(5))are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH_(2).The as-prepared MgH_(2)-H-V_(2)O_(5) composites exhibit low desorption temperatures(Tonset=185℃)with a hydrogen capacity of 6.54 wt%,fast kinetics(Ea=84.55±1.37 kJ mol^(-1) H_(2) for desorption),and long cycling stability.Impressively,hydrogen absorption can be achieved at a temperature as low as 30℃ with a capacity of 2.38 wt%within 60 min.Moreover,the composites maintain a capacity retention rate of~99%after 100 cycles at 275℃.Experimental studies and theoretical calculations demonstrate that the in-situ formed VH_(2)/V catalysts,unique 2D structure of H-V_(2)O_(5) nanosheets,and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties.Notably,the existence of oxygen vacancies plays a double role,which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH_(2),but also indirectly affect the activity of the catalytic phase VH_(2)/V,thereby further boosting the hydrogen storage performance of MgH_(2).This work highlights an oxygen vacancy excited“hydrogen pump”effect of VH_(2)/V on the hydrogen sorption of Mg/MgH_(2).The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems. 展开更多
关键词 hydrogen storage MgH_(2) V_(2)O_(5)nanosheets Oxygen vacancies VH_(2)
下载PDF
Navigating the hydrogen prospect:A comprehensive review of sustainable source-based production technologies,transport solutions,advanced storage mechanisms,and CCUS integration
13
作者 Sehar Tasleem Chandra Sekhar Bongu +1 位作者 Mohan Raj Krishnan Edreese Housni Alsharaeh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期166-215,I0005,共51页
The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable... The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale. 展开更多
关键词 Source-based hydrogen hydrogen utilization Carbon capture E-fuels hydrogen storage Transport infrastructure
下载PDF
Hydrogen Storage Performance During Underground Hydrogen Storage in Depleted Gas Reservoirs:A Review
14
作者 Lingping Zeng Regina Sander +1 位作者 Yongqiang Chen Quan Xie 《Engineering》 SCIE EI CAS CSCD 2024年第9期211-225,共15页
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large... Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources,due to its capacity to address challenges associated with the intermittent nature of renewable energy sources,ensuring a steady and reliable energy supply.Leveraging the existing infrastructure and well-characterized geological formations,depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation.However,significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation.Hydrogen deliverability,hydrogen trapping,and the equation of state are key areas with limited understanding.This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs;it then provides a high-level risk assessment and an overview of the techno-economics of UHS.The significance of this review lies in its consolidation of current knowledge,highlighting unresolved issues and proposing areas for future research.Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape.Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier.In addition,this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies. 展开更多
关键词 Underground hydrogen storage Storage performance hydrogen deliverability hydrogen trapping Risk assessment Techno-economic analysis
下载PDF
Next‑Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting
15
作者 Xueqing Gao Yutong Chen +5 位作者 Yujun Wang Luyao Zhao Xingyuan Zhao Juan Du Haixia Wu Aibing Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期274-322,共49页
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source.Among several hydrogen production methods,it has become the most promising technology.However,there is no large-... Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source.Among several hydrogen production methods,it has become the most promising technology.However,there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production.Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity,which meet the requirements of future development.This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects:electricity,catalyst and electrolyte.In particular,the present situation and the latest progress of the key sources of power,catalytic materials and electrolyzers for electrocatalytic water splitting are introduced.Finally,the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked.It is expected that this review will have an important impact on the field of hydrogen production from water. 展开更多
关键词 hydrogen ELECTROLYSIS hydrogen production Renewable energy CATALYST
下载PDF
In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH_(2) by adding porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres 被引量:1
16
作者 Bing Zhang Xiubo Xie +6 位作者 Yukun Wang Chuanxin Hou Xueqin Sun Yuping Zhang Xiaoyang Yang Ronghai Yu Wei Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1227-1238,共12页
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high... MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2). 展开更多
关键词 Mg-based hydrogen storage material Ni_(3)ZnC_(0.7)/Ni@CNT particles Ni loaded carbon nanotubes Multiple catalysts.
下载PDF
Physical Experiments and Mechanism Study on the Occurrence State of Hydrogen in Clay Minerals
17
作者 WANG Lu JIN Zhijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期70-71,共2页
In recent years,natural hydrogen has been discovered in various geological environments both domestically and internationally,which has sparked a global interest among geologists and led to a surge in the exploration ... In recent years,natural hydrogen has been discovered in various geological environments both domestically and internationally,which has sparked a global interest among geologists and led to a surge in the exploration of hydrogen gas(Klein et al.,2019;Prinzhofer et al.,2019;Moretti and Webber,2021;Scott,2021;Bezruchko,2022).However,there is a lack of research on the occurrence state of natural hydrogen gas,which hinders a deeper understanding of its behavior in underground storage and migration. 展开更多
关键词 natural hydrogen clay minerals hydrogen adsorption density functional theory natural hydrogen exploration grand canonical Monte Carlo
下载PDF
Review on the design of high-strength and hydrogen-embrittlement-resistant steels
18
作者 Zhiyu Du Rongjian Shi +2 位作者 Xingyu Peng Kewei Gao Xiaolu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1572-1589,共18页
Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilizat... Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel materials.Simultaneously,the pursuit of enhanced metallic materials presents a cross-disciplinary scientific and engineering challenge.Developing high-strength,toughened steel with both enhanced strength and hydrogen embrittlement(HE)resistance holds significant theoretical and practical implications.This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and steel sector.Based on the design principles of high-strength steel HE resistance,this review provides a comprehensive overview of research on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps.It also proposes feasible recommendations and prospects for designing high-strength steel with enhanced HE resistance. 展开更多
关键词 hydrogen embrittlement surface design hydrogen traps nanosized precipitates
下载PDF
Enhancing hydrogen evolution and oxidation kinetics through oxygen insertion into nickel lattice
19
作者 Wanli Liang Xiyu Gong +9 位作者 Jinchang Xu Zixuan Dan Fanyan Xie Hulei Yu Hao-Fan Wang Yanshuo Jin Hongjuan Wang Yonghai Cao Hui Meng Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期529-539,I0012,共12页
Nickel-based materials,including metallic Ni and Ni oxide,have been widely studied in the exploration of non-precious-metal hydrogen electrocatalysts,but neither pure Ni nor NiO is ideal for the hydrogen evolution rea... Nickel-based materials,including metallic Ni and Ni oxide,have been widely studied in the exploration of non-precious-metal hydrogen electrocatalysts,but neither pure Ni nor NiO is ideal for the hydrogen evolution reaction(HER)and hydrogen oxidation reaction(HOR).In this paper,an oxygen insertion strategy was applied on nickel to regulate its hydrogen electrocatalytic performance,and the oxygen-inserted nickel catalyst was successfully obtained with the assistance of tungsten dioxide support(denoted as O-Ni/WO_(2)).The partial insertion of oxygen in Ni maintains the face-centered cubic arrangement of Ni atoms,simultaneously expanding the lattice and increasing the lattice spacing.Consequently,the adsorption strength of^(*)H and^(*)OH on Ni is optimized,thus resulting in superior electrocatalytic performance of0-Ni/WO_(2)in alkaline HER/HOR.The Tafel slope of O-Ni/WO_(2)@NF for HER is 56 mV dec^(-1),and the kinetic current density of O-Ni/WO_(2)for HOR reaches 4.85 mA cm^(-2),which is ahead of most currently reported catalysts.Our proposed strategy of inserting an appropriate amount of anions into the metal lattice could provide more possibilities for the design of high-performance catalysts. 展开更多
关键词 hydrogen evolution hydrogen oxidation NICKEL Oxygen insertion Adsorption free energy
下载PDF
Achieving Negatively Charged Pt Single Atoms on Amorphous Ni(OH)_(2)Nanosheets with Promoted Hydrogen Absorption in Hydrogen Evolution
20
作者 Yue Liu Gui Liu +6 位作者 Xiangyu Chen Chuang Xue Mingke Sun Yifei Liu Jianxin Kang Xiujuan Sun Lin Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期213-224,共12页
Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are... Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates,which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts.In this work,Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)_(2)nanosheet arrays.Based on the X-ray absorption fine structure analysis and first-principles calculations,Pt SA was bonded with Ni sites of amorphous Ni(OH)_(2),rather than conventional O sites,resulting in negatively charged Pt^(δ-).In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms,which were the essential intermediate for alkaline hydrogen evolution reaction.The hydrogen spillover process was revealed from amorphous Ni(OH)_(2)that effectively cleave the H-O-H bond of H_(2)O and produce H atom to the Pt SA sites,leading to a low overpotential of 48 mV in alkaline electrolyte at-1000 mA cm^(-2)mg^(-1)_(Pt),evidently better than commercial Pt/C catalysts.This work provided new strategy for the control-lable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states. 展开更多
关键词 hydrogen evolution reaction AMORPHOUS Pt single atoms hydrogen spillover
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部