To investigate the hydrogen permeability of calcium fluoride used for electroslag remelting (ESR) process, "Gas-slag- metal" osmosis process under argon atmosphere saturated with water vapor at 318 K was used to s...To investigate the hydrogen permeability of calcium fluoride used for electroslag remelting (ESR) process, "Gas-slag- metal" osmosis process under argon atmosphere saturated with water vapor at 318 K was used to study the hydrogen permeability of slag containing calcium fluoride. The results indicate that the conventional slag, consisting of 70% CaF2 and 30% A1203, has the lowest hydrogen permeability. A parameter EH was proposed for evaluation of the hydrogen permeability of slags containing calcium fluoride. The hydrogen permeability decreases with increasing EH to a certain extent. An appropriate choice of slag for the ESR process can be obtained. These results also suggest that the hydrogen pick-up in steel after remelting might be reduced when a slag with low hydrogen permeability is used.展开更多
Hydrogen separation and purification are two important chemical processes in the extensive application of hydrogen energy. Membrane technology has opened up a potential solution to the problems of separation and purif...Hydrogen separation and purification are two important chemical processes in the extensive application of hydrogen energy. Membrane technology has opened up a potential solution to the problems of separation and purification in an energy effective way. Membranes of adequate hydrogen permeability, good thermal and mechanical stability are the key to successful application of membrane technology in hydrogen separation and purification. In this paper, the relative parameters concerning hydrogen permeability, the development of different types of membranes namely: palladium composite membranes; V-based alloy membranes, specific functionality embraced alloy membranes, metal hydride (MH) thin films and fabrications, were reviewed and discussed. Pd-free membranes are found to be the ideal alternatives. Suitable MH thin films with mono- or multi-layer microstructures produced by novel fabrication techniques, is likely to be the promising candidates due to possessing properties distinct from those of bulk materials in membrane form.展开更多
The hydrogen diffusion behavior of single crystal stoichiometric NiAl was investigated. The results show that the hydrogen diffusivity and permeabilty of single crystal stoichiometric NiAl obey Arrhenius relationship ...The hydrogen diffusion behavior of single crystal stoichiometric NiAl was investigated. The results show that the hydrogen diffusivity and permeabilty of single crystal stoichiometric NiAl obey Arrhenius relationship in the experimental temperature range. The activation energy of hydrogen diffusion in single crystal stoichiometric NiAl is about 45 kJ/mol.展开更多
Ultra high vacuum gaseous hydrogen permeation experiments on Fe 3Al based alloy were performed in the temperature range of 330~450℃ with an upstream hydrogen pressure between 3.38×10 4 Pa and 7.28×10 4 Pa...Ultra high vacuum gaseous hydrogen permeation experiments on Fe 3Al based alloy were performed in the temperature range of 330~450℃ with an upstream hydrogen pressure between 3.38×10 4 Pa and 7.28×10 4 Pa. The results show that the hydrogen diffusivity and permeability in Fe 3Al based alloy obey Arrhenius relationship in the experimental temperature range and the hydrogen permeation process is controlled by the lattice diffusion of hydrogen at relative high temperature. The activation energy of hydrogen diffusion in the Fe 3Al based alloy was found to be 75 kJ/mol.展开更多
Low pressure,low oxygen concentration,and intense ultraviolet(UV)radiation in high-altitude environments,can cause oxidative stress which can trigger mountain sickness.A recent study demonstrated that hydrogen gas w...Low pressure,low oxygen concentration,and intense ultraviolet(UV)radiation in high-altitude environments,can cause oxidative stress which can trigger mountain sickness.A recent study demonstrated that hydrogen gas with a good permeability in biological membranes can treat various disorders by exerting its selective anti-oxidation and anti-inflammatory effects,indicating that hydrogen therapy plays a role in scavenging free radicals and in balancing oxidation and anti-oxidation systems of ceils. Therefore, we hypothesize that inhaling low-dose hydrogen or drinking hydrogen-saturated water is a novel and simple method to prevent and treat oxidative stress injury caused by low pressure, low oxygen concentration and intense UV radiation in plateaus, thus reducing the risk of mountain sickness.展开更多
Ultra-low carbon(ULC),cold-rolled sheet steels for porcelain enameling containing alloys of titanium and boron are studied. The microstructure,mechanical properties,inclusions,and precipitates of the sheet steels ar...Ultra-low carbon(ULC),cold-rolled sheet steels for porcelain enameling containing alloys of titanium and boron are studied. The microstructure,mechanical properties,inclusions,and precipitates of the sheet steels are analyzed. The hydrogen permeation time of the sheet steels as-annealed and after skin-passed or cold-rolled at different reductions are measured. It is show n that the sheet steels possess different features of enameling properties in hydrogen permeability,fishscale resistance,and pinhole resistance.展开更多
The precipitates and hydrogen permeation behavior were studied in the low carbon steel for enameling.During the preparation of samples,Ti containing and Ti free in vanadium-bearing microalloyed low carbon steel heatin...The precipitates and hydrogen permeation behavior were studied in the low carbon steel for enameling.During the preparation of samples,Ti containing and Ti free in vanadium-bearing microalloyed low carbon steel heating at 750℃ for 3 h,were adopted after cold-rolling.It was found that the a large number of fine VC,TiC,TiN and Ti 4 C 2 S 2 precipitates were in samples of Vanadium-bearing microalloyed low carbon steel with Ti element.And fine VC,Fe 3 C and MnS precipitates were in steels without Ti element.So the numbers of precipitates in the former is more bigger than the later.The activation energies for hydrogen diffusion in both samples are 26.5 and 23.7 kJ/mol,respectively.But at 25℃,the effective diffusion coefficients in the samples for Ti containing and Ti free in Vanadium-bearing microalloyed low carbon steel were measured as 2.71×10-6 and 4.22×10-6 cm 2 /s,respectively.No fishscaling defect occurred in the former and heavy fishscaling defect in the later.展开更多
基金Project(50904015) supported by the National Natural Science Foundation of ChinaProject(N090402012) supported by the Fundamental Research Funds for Central Universities of China
文摘To investigate the hydrogen permeability of calcium fluoride used for electroslag remelting (ESR) process, "Gas-slag- metal" osmosis process under argon atmosphere saturated with water vapor at 318 K was used to study the hydrogen permeability of slag containing calcium fluoride. The results indicate that the conventional slag, consisting of 70% CaF2 and 30% A1203, has the lowest hydrogen permeability. A parameter EH was proposed for evaluation of the hydrogen permeability of slags containing calcium fluoride. The hydrogen permeability decreases with increasing EH to a certain extent. An appropriate choice of slag for the ESR process can be obtained. These results also suggest that the hydrogen pick-up in steel after remelting might be reduced when a slag with low hydrogen permeability is used.
文摘Hydrogen separation and purification are two important chemical processes in the extensive application of hydrogen energy. Membrane technology has opened up a potential solution to the problems of separation and purification in an energy effective way. Membranes of adequate hydrogen permeability, good thermal and mechanical stability are the key to successful application of membrane technology in hydrogen separation and purification. In this paper, the relative parameters concerning hydrogen permeability, the development of different types of membranes namely: palladium composite membranes; V-based alloy membranes, specific functionality embraced alloy membranes, metal hydride (MH) thin films and fabrications, were reviewed and discussed. Pd-free membranes are found to be the ideal alternatives. Suitable MH thin films with mono- or multi-layer microstructures produced by novel fabrication techniques, is likely to be the promising candidates due to possessing properties distinct from those of bulk materials in membrane form.
文摘The hydrogen diffusion behavior of single crystal stoichiometric NiAl was investigated. The results show that the hydrogen diffusivity and permeabilty of single crystal stoichiometric NiAl obey Arrhenius relationship in the experimental temperature range. The activation energy of hydrogen diffusion in single crystal stoichiometric NiAl is about 45 kJ/mol.
基金Supported by the National Natural Science Foundation of China!( 5 9895 1 5 7)
文摘Ultra high vacuum gaseous hydrogen permeation experiments on Fe 3Al based alloy were performed in the temperature range of 330~450℃ with an upstream hydrogen pressure between 3.38×10 4 Pa and 7.28×10 4 Pa. The results show that the hydrogen diffusivity and permeability in Fe 3Al based alloy obey Arrhenius relationship in the experimental temperature range and the hydrogen permeation process is controlled by the lattice diffusion of hydrogen at relative high temperature. The activation energy of hydrogen diffusion in the Fe 3Al based alloy was found to be 75 kJ/mol.
基金supported by the National Natural Science Foundation of China(Grant No.81301134,81371444)
文摘Low pressure,low oxygen concentration,and intense ultraviolet(UV)radiation in high-altitude environments,can cause oxidative stress which can trigger mountain sickness.A recent study demonstrated that hydrogen gas with a good permeability in biological membranes can treat various disorders by exerting its selective anti-oxidation and anti-inflammatory effects,indicating that hydrogen therapy plays a role in scavenging free radicals and in balancing oxidation and anti-oxidation systems of ceils. Therefore, we hypothesize that inhaling low-dose hydrogen or drinking hydrogen-saturated water is a novel and simple method to prevent and treat oxidative stress injury caused by low pressure, low oxygen concentration and intense UV radiation in plateaus, thus reducing the risk of mountain sickness.
文摘Ultra-low carbon(ULC),cold-rolled sheet steels for porcelain enameling containing alloys of titanium and boron are studied. The microstructure,mechanical properties,inclusions,and precipitates of the sheet steels are analyzed. The hydrogen permeation time of the sheet steels as-annealed and after skin-passed or cold-rolled at different reductions are measured. It is show n that the sheet steels possess different features of enameling properties in hydrogen permeability,fishscale resistance,and pinhole resistance.
文摘The precipitates and hydrogen permeation behavior were studied in the low carbon steel for enameling.During the preparation of samples,Ti containing and Ti free in vanadium-bearing microalloyed low carbon steel heating at 750℃ for 3 h,were adopted after cold-rolling.It was found that the a large number of fine VC,TiC,TiN and Ti 4 C 2 S 2 precipitates were in samples of Vanadium-bearing microalloyed low carbon steel with Ti element.And fine VC,Fe 3 C and MnS precipitates were in steels without Ti element.So the numbers of precipitates in the former is more bigger than the later.The activation energies for hydrogen diffusion in both samples are 26.5 and 23.7 kJ/mol,respectively.But at 25℃,the effective diffusion coefficients in the samples for Ti containing and Ti free in Vanadium-bearing microalloyed low carbon steel were measured as 2.71×10-6 and 4.22×10-6 cm 2 /s,respectively.No fishscaling defect occurred in the former and heavy fishscaling defect in the later.