Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of...Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of hydrogen and air as fresh charge components to form extremely lean and homogenous mixture, which resist the spontaneous combustion, while diesel fuel is injected directly inside combustion chamber using the conventional fuel injection systems. This contribution presents an analytical and experimental investigation for the effects of adding hydrogen on diesel engines power output and the reduction of emissions. Parametric analysis is used based on lamped parameters modeling of intake manifold to estimate in cylinder trapped charge. The fuel energy flow to engine cylinders is compared for a range of loads and concentrations to simulate relevant case studies. Diesel fuel reduction for significant range of part-load operation can be achieved by introducing hydrogen, along with power improvement emission reductions are affected positively as well. This is achievable without compromising the engine maximum efficiency, given that most engines are operated at small and part-load during normal driving conditions, which allow for introducing more hydrogen instead of large quantities of excess air during such operation conditions that also can be further improved by charge boosting.展开更多
为实现碳中和目标,应大力发展清洁能源,需要建设综合能源系统(integrated energy system,IES)并对其进行优化。首先提出了一种IES低碳经济运行策略。该策略关注碳交易市场,并引入阶梯式碳交易机制,以促使IES更有效地控制碳排放;其次提...为实现碳中和目标,应大力发展清洁能源,需要建设综合能源系统(integrated energy system,IES)并对其进行优化。首先提出了一种IES低碳经济运行策略。该策略关注碳交易市场,并引入阶梯式碳交易机制,以促使IES更有效地控制碳排放;其次提出了一种基于电解槽、甲烷反应器和氢燃料电池的电转气(power-to-gas,P2G)过程。这种新方法可有效提高氢能利用率,降低运行成本;最后,还提出了供需灵活侧双响应机制。在供应侧,通过热电比可调的热电联产来提高能源利用率。在需求侧,提出电、热、气负荷均具备时间维度上需求响应的同时,还具备可替代性。通过这一机制,能够进一步提升IES环保性和可行性。展开更多
“30*60”双碳背景下,为实现低碳排放,需从低碳政策和低碳技术两个路径进行协调。为此建立了含P2G-CCS(power to gas and carbon capture system,P2G-CCS)耦合和燃气掺氢的虚拟电厂(virtualpowerplant,VPP),并提出了基于阶梯碳交易机制...“30*60”双碳背景下,为实现低碳排放,需从低碳政策和低碳技术两个路径进行协调。为此建立了含P2G-CCS(power to gas and carbon capture system,P2G-CCS)耦合和燃气掺氢的虚拟电厂(virtualpowerplant,VPP),并提出了基于阶梯碳交易机制的VPP优化调度策略。首先,在低碳技术层面,针对P2G-CCS耦合和燃气掺氢子系统,建立了掺氢燃气轮机、掺氢燃气锅炉、两段式电转气(power to gas,P2G)和碳捕集系统(carboncapturesystem,CCS)的数学模型;其次,在低碳政策层面,建立了阶梯碳交易模型对系统碳排放进行约束;最后,在建模基础上,提出了以碳交易成本、购气和煤耗成本、碳封存成本、机组启停成本和弃风成本之和最低为目标函数的优化调度策略。对建立的模型线性化处理后,采用MATLAB调用CPLEX和粒子群算法进行求解,通过设置不同的情景进行对比,验证了所提模型的有效性,并分析了不同固定掺氢比、变掺氢比、不同的阶梯碳交易参数对VPP低碳性和经济性的影响。展开更多
文摘Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of hydrogen and air as fresh charge components to form extremely lean and homogenous mixture, which resist the spontaneous combustion, while diesel fuel is injected directly inside combustion chamber using the conventional fuel injection systems. This contribution presents an analytical and experimental investigation for the effects of adding hydrogen on diesel engines power output and the reduction of emissions. Parametric analysis is used based on lamped parameters modeling of intake manifold to estimate in cylinder trapped charge. The fuel energy flow to engine cylinders is compared for a range of loads and concentrations to simulate relevant case studies. Diesel fuel reduction for significant range of part-load operation can be achieved by introducing hydrogen, along with power improvement emission reductions are affected positively as well. This is achievable without compromising the engine maximum efficiency, given that most engines are operated at small and part-load during normal driving conditions, which allow for introducing more hydrogen instead of large quantities of excess air during such operation conditions that also can be further improved by charge boosting.
文摘为实现碳中和目标,应大力发展清洁能源,需要建设综合能源系统(integrated energy system,IES)并对其进行优化。首先提出了一种IES低碳经济运行策略。该策略关注碳交易市场,并引入阶梯式碳交易机制,以促使IES更有效地控制碳排放;其次提出了一种基于电解槽、甲烷反应器和氢燃料电池的电转气(power-to-gas,P2G)过程。这种新方法可有效提高氢能利用率,降低运行成本;最后,还提出了供需灵活侧双响应机制。在供应侧,通过热电比可调的热电联产来提高能源利用率。在需求侧,提出电、热、气负荷均具备时间维度上需求响应的同时,还具备可替代性。通过这一机制,能够进一步提升IES环保性和可行性。
文摘“30*60”双碳背景下,为实现低碳排放,需从低碳政策和低碳技术两个路径进行协调。为此建立了含P2G-CCS(power to gas and carbon capture system,P2G-CCS)耦合和燃气掺氢的虚拟电厂(virtualpowerplant,VPP),并提出了基于阶梯碳交易机制的VPP优化调度策略。首先,在低碳技术层面,针对P2G-CCS耦合和燃气掺氢子系统,建立了掺氢燃气轮机、掺氢燃气锅炉、两段式电转气(power to gas,P2G)和碳捕集系统(carboncapturesystem,CCS)的数学模型;其次,在低碳政策层面,建立了阶梯碳交易模型对系统碳排放进行约束;最后,在建模基础上,提出了以碳交易成本、购气和煤耗成本、碳封存成本、机组启停成本和弃风成本之和最低为目标函数的优化调度策略。对建立的模型线性化处理后,采用MATLAB调用CPLEX和粒子群算法进行求解,通过设置不同的情景进行对比,验证了所提模型的有效性,并分析了不同固定掺氢比、变掺氢比、不同的阶梯碳交易参数对VPP低碳性和经济性的影响。