The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ...The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.展开更多
By adjusting various Ru/M (M=Co, Ni) molar ratios, a series of highly dispersed bimetallic RuM alloy nanoparticles (NPs) anchored on MIL-110(Al) have been successfully prepared via a conventional impregnation-re...By adjusting various Ru/M (M=Co, Ni) molar ratios, a series of highly dispersed bimetallic RuM alloy nanoparticles (NPs) anchored on MIL-110(Al) have been successfully prepared via a conventional impregnation-reduction method. And they are first used as heterogeneous catalysts for the dehydrogenation reaction of AB at room temperature. The results reveal that the as-prepared RulCo1@MIL-110 and RulNi1@MIL-110 exhibit the highest catalytic activities in different RuCo and RuNi molar ratios, respectively. It is worthy of note that the turnover frequency (TOF) values of Ru1Co1@MIL-110 and Ru1Ni1@MIL-110 catalysts reached 488.1 and 417.1 mol H2 min-1 (mol Ru)-1 and the activation energies (Ea) are 31.7 and 36.0 k J/tool, respectively. The superior catalytic performance is attributed to the bimetallic synergistic action between Ru and M, uniform distribution of metal NPs as well as bi-functional effect between RuM alloy NPs and MIL-110. Moreover, these catalysts exhibit favorable stability after 5 consecutive cycles for the hydrolysis of AB.展开更多
Ammonia borane(NH_(3)BH_(3),AB) is promising for chemical hydrogen sto rage;however,current systems for rapid hydrogen production are limited by the expensive noble metal catalysts required for AB hydrolysis.Here we r...Ammonia borane(NH_(3)BH_(3),AB) is promising for chemical hydrogen sto rage;however,current systems for rapid hydrogen production are limited by the expensive noble metal catalysts required for AB hydrolysis.Here we report the design and synthesis of a highly efficient and robust non-noble-metal catalyst for the hydrolysis of AB at 298 K(TOF=89.56 molH_(2) min^(-1) molCo^(-1)).Experiments and density functional theory calculations were performed to explore the catalyst’s hybrid nanoparticle heterostructure and its catalytic mechanism.The catalyst comprised nitrogen-doped carbon dots confining CoO and CoP,and exhibited strong interface-induced synergistic catalysis for AB hydrolysis that effectively decreased the energy barriers for the dissociation of both AB and water molecules.The co-doping of N and P introduced numerous defects,and further regulated the reactivity of the carbon layers.The heterogeneous interface design technique presented here provides a new strategy for developing efficient and inexpensive non-noblemetal catalysts that may be applicable in other fields related to energy catalysis.展开更多
In this paper,the process of ammonia borane(AB)hydrolysis generate H_(2) on the transition metal Fe@Co core-shell structure has been obtained.According to the different roles played by H_(2)O molecules and the number ...In this paper,the process of ammonia borane(AB)hydrolysis generate H_(2) on the transition metal Fe@Co core-shell structure has been obtained.According to the different roles played by H_(2)O molecules and the number of H_(2)O molecules involved,there are three schemes of reaction paths.RouteⅠdoes not involve the dissociation of H_(2)O molecules and all H atoms come from AB.Moreover,the H_(2)O molecule has no effect on the breaking of the B—H bond or the N—H bond.The reaction absorbs more heat during the formation of the second and third H_(2) molecules.RouteⅡincludes the dissociation of H_(2)O molecules and the cleavage of B—H or N—H bonds,respectively,and the reaction shows a slight exotherm.RouteⅢstarted from the break of the B—N bond and obtained 3H_(2) molecules through the participation of different numbers of H_(2)O molecules.After multiple comparative analyses,the optimal hydrolysis reaction path has been obtained,and the reaction process can proceed spontaneously at room temperature.展开更多
In this paper,the optimization of hydrogen(H2)production by ammonia borane(NH3BH3)over PdCoAg/AC was investigated using the response surface methodology.Besides,the electro-oxidation of NH3BH3 was determined and optim...In this paper,the optimization of hydrogen(H2)production by ammonia borane(NH3BH3)over PdCoAg/AC was investigated using the response surface methodology.Besides,the electro-oxidation of NH3BH3 was determined and optimized using the same method to measure its potential use in the direct ammonium boran fuel cells.Moreover,the ternary alloyed catalyst was synthesized using the chemical reduction method.The synergistic effect between Pd,Co and Ag plays an important role in enhancement of NH3BH3 hydrolysis.In addition,the support effect could also efficiently improve the catalytic performance.Furthermore,the effects of NH3BH3 concentration(0.1-50 mmol/5 mL),catalyst amount(1-30 mg)and temperature(20℃-50℃)on the rate of H2 production and the effects of temperature(20℃-50℃),NH3BH3 concentration(0.05-1 mol/L)and catalyst amount(0.5-5 jiL)on the electro-oxidation reaction of NH3BH3 were investigated using the central composite design experimental design.The implementation of the response surface methodology resulted in the formulation of four models out of which the quadratic model was adjudged to efficiently appropriate the experimental data.A further statistical analysis of the quadratic model demonstrated the significance of the model with a pvalue far less than 0.05 for each model and coefficient of determination(R2)of 0.85 and 0.95 for H2 production rate and NH3BH3 electrroxidation peak current,respectively.展开更多
We report on the preparation of three kinds of Ni nanoparticles supported on carbon (Ni/C) and their application in the catalytic hydrolysis of ammonia borane (AB). Three Ni/C catalysts were prepared from a Ni met...We report on the preparation of three kinds of Ni nanoparticles supported on carbon (Ni/C) and their application in the catalytic hydrolysis of ammonia borane (AB). Three Ni/C catalysts were prepared from a Ni metal-organic framework (Ni-MOF) precursor by reduction with KBI-G calcination at 700 ℃ under Ar, and a combination of calcination and reduction, the products being denoted as Ni/C-1, Ni/C-2, and Ni/C-3, respectively. The structure, morphology, specific surface area, and element valence were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption measurements, and X-ray photoelectron spectra (XPS). The results demonstrate that Ni/C-1 is composed of amorphous Ni particles agglomerated on carbon, Ni/C-2 is characteristic of crystalline Ni nanoparticles (about 10 nm in size) supported on carbon with Ni oxidized on the surface, while the surface of the Ni particles in Ni/C-3 is less oxidized. The specific surface areas of Ni-MOF, Ni/C-1, Ni/C-2, and Ni/C-3 are 1239, 33, 470, and 451 m2·g-1, respectively. The catalytic hydrolysis of AB with Ni/C-3 shows a hydrogen generation rate of 834 mL-min^-1·g-1 at room temperature and an activation energy of 31.6 kJ/mol. Ni/C-3 shows higher catalytic activity than other materials, which can be attributed to its larger surface area of crystalline Ni. This study offers a promising way to replace noble metal by under ambient conditions. Ni nanoparticles for AB hydrolysis展开更多
Rational construction of highly dispersed,small size,low cost catalysts for release of hydrogen from ammonia borane(AB)is regarded as a prospective approach for promoting the development of upcoming hydrogen economy.H...Rational construction of highly dispersed,small size,low cost catalysts for release of hydrogen from ammonia borane(AB)is regarded as a prospective approach for promoting the development of upcoming hydrogen economy.However,the high price and scarcity of precious metal catalysts impose restrictions on their large-scale application.To this end,with the aid of a Cu doped CoZn-zeolitic imidazolate frameworks(ZIFs)template strategy,we successfully construct ultrafine monodispersed Co_(2)P/(0.59-Cu_(3)P)on CoZn-ZIF derived porous N-doped carbon(Co_(2)P/(0.59-Cu_(3)P)-NC)as an efficient non-noble-metal catalyst.Specifically,Co and Cu atoms can be geometrically separated to high degree due to the presence of Zn in the CuCoZn-ZIF precursor,evaporation of Zn during pyrolysis can generate porous structure with the framework well maintained.The results show that porous Co_(2)P/(0.59-Cu_(3)P)-NC bimetallic phosphide exhibits large specific surface area,hierarchical pore structure,well-exposed active sites.Based on the kinetics analyses and ion effects,the catalyst has achieved an unprecedentedly high total turnover frequency(TOF)of 798 mol·molcat^(−1)·min^(−1)in 0.4 M NaOH solution at 298 K,which surpasses all the ever-reported transition-metal phosphides catalysts for hydrogen generation from AB.Experiments and theoretical studies confirm that the highly porous structure of the support,the ultrafine and high dispersion of nanoparticles,the N/P doping and their synergistic effects(e.g.,M-P,M-N,N-C,M-M',M-support)jointly induce strong electron transfer,which can reduce the reaction energy barrier and enhance their interaction with AB,thus correspondingly obtaining excellent catalytic performance.The mechanism and strategy presented in this work pave an avenue for the design of non-noble metal catalyst for hydrogen energy system.展开更多
Ammonia borane(NHsBH3,AB)is an ideal raw material of hydrogen production with higher hydrogen storage capacity.In this paper,the catalytic processes of AB dehydrogenation were described from different ways,including t...Ammonia borane(NHsBH3,AB)is an ideal raw material of hydrogen production with higher hydrogen storage capacity.In this paper,the catalytic processes of AB dehydrogenation were described from different ways,including thermal dehydrogenation,hydrolysis,methanolysis,photocatalysis and photopiezoelectric synergy catalysis with experimental research and theoretical calculations.Catalyst models include bulk materials,two-dimensional materials,nanocluster particles and single/diatomic structures.Among them,the proportion of H2 released is different,and the reaction conditions are also different,which are suitable for different application scenarios.Through this review,we could have a preliminary comprehensive understanding of AB dehydrogenation reaction.展开更多
Ammonia borane(NH3BH3,AB)holds promise for chemical storage of hydrogen.However,designing superb and low-cost photocatalyst to drive hydrogen evolution from AB under visible light irradiation is highly desirable but r...Ammonia borane(NH3BH3,AB)holds promise for chemical storage of hydrogen.However,designing superb and low-cost photocatalyst to drive hydrogen evolution from AB under visible light irradiation is highly desirable but remains a major challenge for promoting the practical utilization of AB.Herein,we demonstrated a heterostructure photocatalyst consisting of zerodimensional(0D)CoP nanoparticles immobilized on two-dimensional(2D)Co_(2)P nanosheets(CoP/Co_(2)Ps)as a high-performance and low-cost catalyst for hydrogen evolution from AB hydrolysis,in which 0D/2D heterostructure was synthesized using the saltinduced phase transformation strategy.Interestingly,the optimized CoP/Co_(2)Ps exhibit a robust H_(2) evolution rate of 32.1 L∙min^(−1)∙g_(Co)^(−1),corresponding to a turnover frequency(TOF)value of 64.1 min^(−1),being among the highest TOF for non-noblemetal catalysts ever reported,even outperforming some precious metal catalysts.This work not only opens a new avenue to accelerate hydrogen evolution from AB by regulating the electronic structures of heterointerfaces,but also provides a novel strategy for the construction of precious-metal-free materials for hydrogen-related energy catalysis in the future.展开更多
采用溶剂热方法合成了沸石咪唑酯骨架结构材料Co-ZIF-9,并将其用于非均相催化氨硼烷水解放氢实验.结果表明:配位的Co-ZIF-9在室温下能够有效地催化氨硼烷放出氢气,且其催化活性远高于Co纳米粒子,Co-ZIF-9的多孔结构在催化中起了很大的作...采用溶剂热方法合成了沸石咪唑酯骨架结构材料Co-ZIF-9,并将其用于非均相催化氨硼烷水解放氢实验.结果表明:配位的Co-ZIF-9在室温下能够有效地催化氨硼烷放出氢气,且其催化活性远高于Co纳米粒子,Co-ZIF-9的多孔结构在催化中起了很大的作用.另外,Co-ZIF-9催化水解氨硼烷的活化能约为40.8 k J mol-1,低于多数用于该催化实验的其他催化剂,表明所合成的沸石咪唑酯骨架结构材料Co-ZIF-9具有优越的催化性能.展开更多
合成了蜂窝状的分级多孔碳,并以多孔碳为载体通过浸渍-化学还原法制备碳载镍(Ni/C)作为催化氨硼烷水解制氢的催化剂。采用XRD、BET、SEM、Raman、TEM等手段对样品进行了表征并研究了Ni/C室温催化性能。结果显示,多孔碳比表面积高达737 m...合成了蜂窝状的分级多孔碳,并以多孔碳为载体通过浸渍-化学还原法制备碳载镍(Ni/C)作为催化氨硼烷水解制氢的催化剂。采用XRD、BET、SEM、Raman、TEM等手段对样品进行了表征并研究了Ni/C室温催化性能。结果显示,多孔碳比表面积高达737 m2·g-1,具有部分石墨化结构;负载的非晶态镍纳米颗粒平均粒径约为10 nm,均匀分布在碳基材。碳载镍对氨硼烷水解反应具有良好的催化活性,镍负载量为30wt%时催化性能最佳,298 K温度下放氢速率达到1 304.67 m L·min-1·g-1,活化能为29.1 k J·mol-1,并且具备一定的催化稳定性,表明Ni/C可作为一种廉价高效的催化剂应用于催化氨硼烷水解制氢。展开更多
基金supported by the National Natural Science Foundation of China(22108238,21878259)the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)+5 种基金Anhui Provincial Natural Science Founda-tion(1908085QB68)the Natural Science Foundation of the Anhui Higher Education Institutions of China(KJ2020A0275)Major Science and Technology Project of Anhui Province(201903a05020055)Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(ZJKL-ACEMT-1802)China Postdoctoral Science Foundation(2019M662060,2020T130580)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110).
文摘The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.
基金supported by the Natural Science Fund for Creative Research Groups of Hubei Province(No.2014CFA015)Hubei Province Education Office Key Laboratory(No.2016-KL-007)of Chinasupported by the Hubei College Students’Innovation Training Program of China(No.201410512024and No.201510512030)
文摘By adjusting various Ru/M (M=Co, Ni) molar ratios, a series of highly dispersed bimetallic RuM alloy nanoparticles (NPs) anchored on MIL-110(Al) have been successfully prepared via a conventional impregnation-reduction method. And they are first used as heterogeneous catalysts for the dehydrogenation reaction of AB at room temperature. The results reveal that the as-prepared RulCo1@MIL-110 and RulNi1@MIL-110 exhibit the highest catalytic activities in different RuCo and RuNi molar ratios, respectively. It is worthy of note that the turnover frequency (TOF) values of Ru1Co1@MIL-110 and Ru1Ni1@MIL-110 catalysts reached 488.1 and 417.1 mol H2 min-1 (mol Ru)-1 and the activation energies (Ea) are 31.7 and 36.0 k J/tool, respectively. The superior catalytic performance is attributed to the bimetallic synergistic action between Ru and M, uniform distribution of metal NPs as well as bi-functional effect between RuM alloy NPs and MIL-110. Moreover, these catalysts exhibit favorable stability after 5 consecutive cycles for the hydrolysis of AB.
基金financial support from the National Natural Science Foundation of China(Nos.21905253,51973200,51433003 and 21774041)the China Postdoctoral Science Foundation(2018M640681,2019T120632)+2 种基金JLU Science and Technology Innovative Research Team 2017TD-06Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(No.2017B030301007)the Center of Advanced Analysis & Gene Sequencing,Zhengzhou University。
文摘Ammonia borane(NH_(3)BH_(3),AB) is promising for chemical hydrogen sto rage;however,current systems for rapid hydrogen production are limited by the expensive noble metal catalysts required for AB hydrolysis.Here we report the design and synthesis of a highly efficient and robust non-noble-metal catalyst for the hydrolysis of AB at 298 K(TOF=89.56 molH_(2) min^(-1) molCo^(-1)).Experiments and density functional theory calculations were performed to explore the catalyst’s hybrid nanoparticle heterostructure and its catalytic mechanism.The catalyst comprised nitrogen-doped carbon dots confining CoO and CoP,and exhibited strong interface-induced synergistic catalysis for AB hydrolysis that effectively decreased the energy barriers for the dissociation of both AB and water molecules.The co-doping of N and P introduced numerous defects,and further regulated the reactivity of the carbon layers.The heterogeneous interface design technique presented here provides a new strategy for developing efficient and inexpensive non-noblemetal catalysts that may be applicable in other fields related to energy catalysis.
基金funded by the Natural Science Foundation of China(Nos.21603109,U1404216)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676)。
文摘In this paper,the process of ammonia borane(AB)hydrolysis generate H_(2) on the transition metal Fe@Co core-shell structure has been obtained.According to the different roles played by H_(2)O molecules and the number of H_(2)O molecules involved,there are three schemes of reaction paths.RouteⅠdoes not involve the dissociation of H_(2)O molecules and all H atoms come from AB.Moreover,the H_(2)O molecule has no effect on the breaking of the B—H bond or the N—H bond.The reaction absorbs more heat during the formation of the second and third H_(2) molecules.RouteⅡincludes the dissociation of H_(2)O molecules and the cleavage of B—H or N—H bonds,respectively,and the reaction shows a slight exotherm.RouteⅢstarted from the break of the B—N bond and obtained 3H_(2) molecules through the participation of different numbers of H_(2)O molecules.After multiple comparative analyses,the optimal hydrolysis reaction path has been obtained,and the reaction process can proceed spontaneously at room temperature.
基金This work was financially supported by the Scientific Research Projects Department of Van Yuziincii Yil University(Project No:FYL-2018-6571).
文摘In this paper,the optimization of hydrogen(H2)production by ammonia borane(NH3BH3)over PdCoAg/AC was investigated using the response surface methodology.Besides,the electro-oxidation of NH3BH3 was determined and optimized using the same method to measure its potential use in the direct ammonium boran fuel cells.Moreover,the ternary alloyed catalyst was synthesized using the chemical reduction method.The synergistic effect between Pd,Co and Ag plays an important role in enhancement of NH3BH3 hydrolysis.In addition,the support effect could also efficiently improve the catalytic performance.Furthermore,the effects of NH3BH3 concentration(0.1-50 mmol/5 mL),catalyst amount(1-30 mg)and temperature(20℃-50℃)on the rate of H2 production and the effects of temperature(20℃-50℃),NH3BH3 concentration(0.05-1 mol/L)and catalyst amount(0.5-5 jiL)on the electro-oxidation reaction of NH3BH3 were investigated using the central composite design experimental design.The implementation of the response surface methodology resulted in the formulation of four models out of which the quadratic model was adjudged to efficiently appropriate the experimental data.A further statistical analysis of the quadratic model demonstrated the significance of the model with a pvalue far less than 0.05 for each model and coefficient of determination(R2)of 0.85 and 0.95 for H2 production rate and NH3BH3 electrroxidation peak current,respectively.
文摘We report on the preparation of three kinds of Ni nanoparticles supported on carbon (Ni/C) and their application in the catalytic hydrolysis of ammonia borane (AB). Three Ni/C catalysts were prepared from a Ni metal-organic framework (Ni-MOF) precursor by reduction with KBI-G calcination at 700 ℃ under Ar, and a combination of calcination and reduction, the products being denoted as Ni/C-1, Ni/C-2, and Ni/C-3, respectively. The structure, morphology, specific surface area, and element valence were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption measurements, and X-ray photoelectron spectra (XPS). The results demonstrate that Ni/C-1 is composed of amorphous Ni particles agglomerated on carbon, Ni/C-2 is characteristic of crystalline Ni nanoparticles (about 10 nm in size) supported on carbon with Ni oxidized on the surface, while the surface of the Ni particles in Ni/C-3 is less oxidized. The specific surface areas of Ni-MOF, Ni/C-1, Ni/C-2, and Ni/C-3 are 1239, 33, 470, and 451 m2·g-1, respectively. The catalytic hydrolysis of AB with Ni/C-3 shows a hydrogen generation rate of 834 mL-min^-1·g-1 at room temperature and an activation energy of 31.6 kJ/mol. Ni/C-3 shows higher catalytic activity than other materials, which can be attributed to its larger surface area of crystalline Ni. This study offers a promising way to replace noble metal by under ambient conditions. Ni nanoparticles for AB hydrolysis
基金the National Natural Science Foundation of China(Nos.U20041100 and 21706242)Science and Technology Project of Henan Province(No.212102110068).
文摘Rational construction of highly dispersed,small size,low cost catalysts for release of hydrogen from ammonia borane(AB)is regarded as a prospective approach for promoting the development of upcoming hydrogen economy.However,the high price and scarcity of precious metal catalysts impose restrictions on their large-scale application.To this end,with the aid of a Cu doped CoZn-zeolitic imidazolate frameworks(ZIFs)template strategy,we successfully construct ultrafine monodispersed Co_(2)P/(0.59-Cu_(3)P)on CoZn-ZIF derived porous N-doped carbon(Co_(2)P/(0.59-Cu_(3)P)-NC)as an efficient non-noble-metal catalyst.Specifically,Co and Cu atoms can be geometrically separated to high degree due to the presence of Zn in the CuCoZn-ZIF precursor,evaporation of Zn during pyrolysis can generate porous structure with the framework well maintained.The results show that porous Co_(2)P/(0.59-Cu_(3)P)-NC bimetallic phosphide exhibits large specific surface area,hierarchical pore structure,well-exposed active sites.Based on the kinetics analyses and ion effects,the catalyst has achieved an unprecedentedly high total turnover frequency(TOF)of 798 mol·molcat^(−1)·min^(−1)in 0.4 M NaOH solution at 298 K,which surpasses all the ever-reported transition-metal phosphides catalysts for hydrogen generation from AB.Experiments and theoretical studies confirm that the highly porous structure of the support,the ultrafine and high dispersion of nanoparticles,the N/P doping and their synergistic effects(e.g.,M-P,M-N,N-C,M-M',M-support)jointly induce strong electron transfer,which can reduce the reaction energy barrier and enhance their interaction with AB,thus correspondingly obtaining excellent catalytic performance.The mechanism and strategy presented in this work pave an avenue for the design of non-noble metal catalyst for hydrogen energy system.
基金funded by the Natural Science Basic Research Program of Shaanxi(Nos.2022JQ-108 and 2022JQ-096)the National Natural Science Foundation of China(No.22104079).
文摘Ammonia borane(NHsBH3,AB)is an ideal raw material of hydrogen production with higher hydrogen storage capacity.In this paper,the catalytic processes of AB dehydrogenation were described from different ways,including thermal dehydrogenation,hydrolysis,methanolysis,photocatalysis and photopiezoelectric synergy catalysis with experimental research and theoretical calculations.Catalyst models include bulk materials,two-dimensional materials,nanocluster particles and single/diatomic structures.Among them,the proportion of H2 released is different,and the reaction conditions are also different,which are suitable for different application scenarios.Through this review,we could have a preliminary comprehensive understanding of AB dehydrogenation reaction.
基金the National Natural Science Foundation of China(Nos.22108238,21878259,22278353,and U22A20408)the Zhejiang Provincial Natural Science Foundation of China(Nos.LR18B060001 and Z23B060009)China Postdoctoral Science Foundation(Nos.2020T130580,PC2022046,and 2019M662060).
文摘Ammonia borane(NH3BH3,AB)holds promise for chemical storage of hydrogen.However,designing superb and low-cost photocatalyst to drive hydrogen evolution from AB under visible light irradiation is highly desirable but remains a major challenge for promoting the practical utilization of AB.Herein,we demonstrated a heterostructure photocatalyst consisting of zerodimensional(0D)CoP nanoparticles immobilized on two-dimensional(2D)Co_(2)P nanosheets(CoP/Co_(2)Ps)as a high-performance and low-cost catalyst for hydrogen evolution from AB hydrolysis,in which 0D/2D heterostructure was synthesized using the saltinduced phase transformation strategy.Interestingly,the optimized CoP/Co_(2)Ps exhibit a robust H_(2) evolution rate of 32.1 L∙min^(−1)∙g_(Co)^(−1),corresponding to a turnover frequency(TOF)value of 64.1 min^(−1),being among the highest TOF for non-noblemetal catalysts ever reported,even outperforming some precious metal catalysts.This work not only opens a new avenue to accelerate hydrogen evolution from AB by regulating the electronic structures of heterointerfaces,but also provides a novel strategy for the construction of precious-metal-free materials for hydrogen-related energy catalysis in the future.
文摘采用溶剂热方法合成了沸石咪唑酯骨架结构材料Co-ZIF-9,并将其用于非均相催化氨硼烷水解放氢实验.结果表明:配位的Co-ZIF-9在室温下能够有效地催化氨硼烷放出氢气,且其催化活性远高于Co纳米粒子,Co-ZIF-9的多孔结构在催化中起了很大的作用.另外,Co-ZIF-9催化水解氨硼烷的活化能约为40.8 k J mol-1,低于多数用于该催化实验的其他催化剂,表明所合成的沸石咪唑酯骨架结构材料Co-ZIF-9具有优越的催化性能.
文摘合成了蜂窝状的分级多孔碳,并以多孔碳为载体通过浸渍-化学还原法制备碳载镍(Ni/C)作为催化氨硼烷水解制氢的催化剂。采用XRD、BET、SEM、Raman、TEM等手段对样品进行了表征并研究了Ni/C室温催化性能。结果显示,多孔碳比表面积高达737 m2·g-1,具有部分石墨化结构;负载的非晶态镍纳米颗粒平均粒径约为10 nm,均匀分布在碳基材。碳载镍对氨硼烷水解反应具有良好的催化活性,镍负载量为30wt%时催化性能最佳,298 K温度下放氢速率达到1 304.67 m L·min-1·g-1,活化能为29.1 k J·mol-1,并且具备一定的催化稳定性,表明Ni/C可作为一种廉价高效的催化剂应用于催化氨硼烷水解制氢。