期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg-Nd-Ni-Cubased Mg_2Ni-type Alloys by Adding Nd
1
作者 张羊换 ZHAI Tingting +3 位作者 YANG Tai YUAN Zeming ZHANG Guofang DONG Xiaoping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1115-1124,共10页
In order to improve the gaseous and electrochemical hydrogen storage kinetics of the M2Nitype alloy, the elements Cu and Nd were added in the alloy. The nanocrystalline and amorphous Mg2Ni-type alloys with the composi... In order to improve the gaseous and electrochemical hydrogen storage kinetics of the M2Nitype alloy, the elements Cu and Nd were added in the alloy. The nanocrystalline and amorphous Mg2Ni-type alloys with the composition of(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15, 20) were prepared by melt spinning technology. The effects of Nd content on the structures and hydrogen storage kinetics of the alloys were investigated. The characterization by X-ray diffraction(XRD), transmission electron microscopy(TEM) and scanning electron microscopy(SEM) reveals that all the as-cast alloys hold multiphase structures, containing Mg2Ni-type major phase as well as some secondary phases Mg6Ni, Nd5Mg41, and Nd Ni, whose amounts clearly grow with increasing Nd content. Furthermore, the as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a mixed structure of nanocrystalline and amorphous structure and the amorphization degree of the alloys visibly increases with the rising of the Nd content, suggesting that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. The measurement of the hydrogen storage kinetics indicates that the addition of Nd significantly improves the gaseous and electrochemical hydrogen storage kinetics of the alloys. The addition of Nd enhances the diffusion ability of hydrogen atoms in the alloy, but it impairs the charge-transfer reaction on the surface of the alloy electrode, which makes the high rate discharge ability(HRD) of the alloy electrode fi rst mount up and then go down with the growing of Nd content. 展开更多
关键词 Mg2Ni-type alloy Nd addition structures hydrogen storage kinetics
下载PDF
Structure and electrochemical properties of LaMgNi4-xCox(x=0-0.8)hydrogen storage electrode alloys 被引量:5
2
作者 Tai Yang Ting-Ting Zhai +3 位作者 Ze-Ming Yuan Wen-Gang Bu Yan Qi Yang-Huan Zhang 《Rare Metals》 SCIE EI CAS CSCD 2018年第3期249-256,共8页
LaMgNi(4-x)Cox(x = 0-0.8) electrode alloys used for MH/Ni batteries were prepared by induction melting. The structures and electrochemical hydrogen storage properties of the alloys were investigated in detail.X-ra... LaMgNi(4-x)Cox(x = 0-0.8) electrode alloys used for MH/Ni batteries were prepared by induction melting. The structures and electrochemical hydrogen storage properties of the alloys were investigated in detail.X-ray diffraction(XRD) and scanning electron microscopy(SEM) analysis show that LaMgNi4 phase and LaNi5 phase are obtained. The lattice parameters of the two phases increase first and then decrease with Co content increasing.The electrochemical properties of the alloy electrodes were measured by means of simulated battery tests. Results show that the addition of Co does not change the discharge voltage plateau of the alloy electrodes. However, the maximum discharge capacity increases from 319.9 mAh·g^-1(x = 0)to 347.5 mAh·g^-1(x = 0.4) and then decreases to331.7 mAh·g^-1(x = 0.8). The effects of Co content on electrochemical kinetics of the alloy electrodes were also performed. The high rate dischargeability(HRD) first increases and then decreases with Co content increasing and reaches the maximum value(95.0 %) when x = 0.4. Test results of the electrochemical impedance spectra(EIS),potentiodynamic polarization curves and constant potential step measurements of the alloy electrodes all demonstrate that when Co content is 0.4 at%, the alloy exhibits the best comprehensive electrochemical properties. 展开更多
关键词 hydrogen storage alloy Element substitution Phase structure Electrochemical performances Kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部