To improve the hydrogen evolution rate in continuous hydrogen production of a fermentative hydrogen-producing bacteria strain B49 (AF481148 in EMBL), 4% immobilized cells by polyvinyl alcohol-boric acid method, with t...To improve the hydrogen evolution rate in continuous hydrogen production of a fermentative hydrogen-producing bacteria strain B49 (AF481148 in EMBL), 4% immobilized cells by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate in a column reactor obtain hydrogen yield of 2.31 mol H2/mol glucose and hydrogen evolution rate of 1435.4 ml/L culture·h respectively at medium retention time of 2 h with a medium containing l0 g glucose/L. As the cell density in gel beads is increased to 8%, hydrogen yield and hydrogen evolution rate for l0 g glucose/L are 2.34 mol H2/mol glucose and 2912.4 ml/L culture · h respectively at medium retention time of 1 h, and for molasses wastewater COD of 7505.9 mg/L hydrogen production potential of 205.6 ml/g COD and hydrogen evolution rate of 2057.7 ml/L culture·h at hydraulic retention time of 0.75 h are observed. In the continuous culture pH value keeps around 3.9 by self regulation.展开更多
To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen produc...To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen production has a correlation with cell growth and the consumption of glucose and soluble protein. The optimum pH for cell growth is 4.5±0.15. At acidic pH 4.0±0.15, the bacteria has the maximum accumulated hydrogen volume of 2382 ml/L culture and the maximum hydrogen evolution rate of 339.9 ml/L culture·h with 1% glucose. The optimum temperature for cell growth and hydrogen production is 35℃. In addition, fermentative hydrogen-producing bacterial strain B49 can generate hydrogen from the decomposition of other organic substrates such as wheat, soybean, corn, and potato. Moreover, it can also produce hydrogen from molasses wastewater and brewage wastewater, and hydrogen yields are 137.9 ml H 2/g COD and 49.9 ml H 2/g COD, respectively.展开更多
Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 ...Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 - 24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m^3·d), -215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m^3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m^3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor·h and hydrogen percentage of 51% -53% in the biogas.展开更多
Batch experiments were conducted to investigate the effects of magnesium on glucose metabolism, including growth and hydrogen-producing capacity of fermentative hydrogen-producing bacterial strain B49. These abilities...Batch experiments were conducted to investigate the effects of magnesium on glucose metabolism, including growth and hydrogen-producing capacity of fermentative hydrogen-producing bacterial strain B49. These abilities were enhanced with an increase in magnesium concentration. At the end of fermentation from (10 g/L) glucose, for 10 mg/L MgCl2·6H2O the cell growth in terms of optical density (OD) at 600nm was 0.46, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was 1.1, and the accumulated hydrogen volume was 934.9 mL H2/L culture; for 200 mg/L of MgCl2·6H2O OD600 nm was increased to 1.34. The accumulated hydrogen volume was increased to 2 360.5 mL H2/L culture, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was increased to 1.3 and polysaccharide was decreased to 2.5 mg/L. Moreover, the magnesium solution addition to the medium at different fermentation times affected hydrogen-producing ability. However, the later the addition time was postponed, the less the effect was on hydrogen evolution. Further experiments confirmed the enhancement was dependent on magnesium ions and not on the other inorganic ions such as SO42- or Cl-, which constituted the magnesium salts.展开更多
A method based on PCR amplification of the 16S rRNA gene (rDNA)-23S rDNA intergenic spacer regions (ISR) was developed for the identification of species within the novel group hydrogen-producing anaerobes. The sizes o...A method based on PCR amplification of the 16S rRNA gene (rDNA)-23S rDNA intergenic spacer regions (ISR) was developed for the identification of species within the novel group hydrogen-producing anaerobes. The sizes of the PCR products varied from 1264 to 398 bp. Strain of isolate Rennanqilyf 3 was characterized as having products of 1262,398,638,437 and 436 bp. The isolate Rennanqilyf 1 had product of 1264 bp. The isolate Rennanqilyf 13 had products of 1261,579 and 485 bp. Of the 3 species of the novel group hydrogen-producing anaerobes examined, no one was indistinguishable. Two environmental isolates were identified as hydrogen-producing bacteria, which were new species in present taxon. Rennanqilyf 3 could not be associated with any Clostridium sp. studied. Rennanqilyf 1 could be classified into Clostridium genus. The combination between 16S rDNA equencing and length polymorphisms of IRS in 16S-23S rDNA is a better method for determining species of the hydrogen-producing bacteria.展开更多
It is a longstanding and challenging task to develop sustainable environment-friendly and cost-effective corrosion-protection technologies for Mg alloys, especially under marine conditions in which corrosion can norma...It is a longstanding and challenging task to develop sustainable environment-friendly and cost-effective corrosion-protection technologies for Mg alloys, especially under marine conditions in which corrosion can normally be significantly accelerated by bacterial activity. However,this paper reports on the corrosion of highly active Mg interestingly inhibited by an algal-symbiotic bacterium Bacillus altitudinis. The corrosion of Mg in the presence of the bacterium drastically reduced by one order of magnitude after 14 days of immersion. This means that the algal-symbiotic bacterium widely available in natural ocean environments may be employed as a green and sustainable inhibitor in the marine industry. Based on electrochemical measurements, surface analyses and microbe experiments, a combined inhibition mechanism is proposed in the paper to interpret the interesting corrosion behavior of Mg.展开更多
[Objective] The aim was to explore the relationship between alage-lysing bacterium and Anabaena flosaquae so as to provide reference for the control of bloom. [Method] An algae-lysing bacterium strain named S7 was iso...[Objective] The aim was to explore the relationship between alage-lysing bacterium and Anabaena flosaquae so as to provide reference for the control of bloom. [Method] An algae-lysing bacterium strain named S7 was isolated from eu- trophic river. The lyric efficiency and performing mode of S7 strain to Anabaena flos- aquae was studied. Influence of different environmental factors and the relationship between S7 strain and Anabaena flosaquae was also studied, and then the bacteri- um strain was physiologically identified. [Result] More than 90% of Anabaena flos- aquae had been removed by 7 d when the volume ratio of medium to algae solu- tion was 30%, the pH was 9 and the temperature was 35 ℃. These results also showed that a mutual inhibit relationship existed between S7 strain and Anabaena flos-aquae. The S7 strain killed the algae by indirectly through certain lyric agents in absence of direct contact with the target but by secreting metabolites. Moreover, these lyric agents also had the thermostability. 16SrDNA sequence analysis showed that S7 strain belonged to Chryseobacterium sp. [Conclusion] The examined Poly-p proved that S7 strain is polyphosphate accumulating bacteria (PAOs) and has better lyric efficiency.展开更多
文摘To improve the hydrogen evolution rate in continuous hydrogen production of a fermentative hydrogen-producing bacteria strain B49 (AF481148 in EMBL), 4% immobilized cells by polyvinyl alcohol-boric acid method, with the addition of a small amount of calcium alginate in a column reactor obtain hydrogen yield of 2.31 mol H2/mol glucose and hydrogen evolution rate of 1435.4 ml/L culture·h respectively at medium retention time of 2 h with a medium containing l0 g glucose/L. As the cell density in gel beads is increased to 8%, hydrogen yield and hydrogen evolution rate for l0 g glucose/L are 2.34 mol H2/mol glucose and 2912.4 ml/L culture · h respectively at medium retention time of 1 h, and for molasses wastewater COD of 7505.9 mg/L hydrogen production potential of 205.6 ml/g COD and hydrogen evolution rate of 2057.7 ml/L culture·h at hydraulic retention time of 0.75 h are observed. In the continuous culture pH value keeps around 3.9 by self regulation.
文摘To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen production has a correlation with cell growth and the consumption of glucose and soluble protein. The optimum pH for cell growth is 4.5±0.15. At acidic pH 4.0±0.15, the bacteria has the maximum accumulated hydrogen volume of 2382 ml/L culture and the maximum hydrogen evolution rate of 339.9 ml/L culture·h with 1% glucose. The optimum temperature for cell growth and hydrogen production is 35℃. In addition, fermentative hydrogen-producing bacterial strain B49 can generate hydrogen from the decomposition of other organic substrates such as wheat, soybean, corn, and potato. Moreover, it can also produce hydrogen from molasses wastewater and brewage wastewater, and hydrogen yields are 137.9 ml H 2/g COD and 49.9 ml H 2/g COD, respectively.
文摘Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 - 24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m^3·d), -215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m^3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m^3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor·h and hydrogen percentage of 51% -53% in the biogas.
文摘Batch experiments were conducted to investigate the effects of magnesium on glucose metabolism, including growth and hydrogen-producing capacity of fermentative hydrogen-producing bacterial strain B49. These abilities were enhanced with an increase in magnesium concentration. At the end of fermentation from (10 g/L) glucose, for 10 mg/L MgCl2·6H2O the cell growth in terms of optical density (OD) at 600nm was 0.46, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was 1.1, and the accumulated hydrogen volume was 934.9 mL H2/L culture; for 200 mg/L of MgCl2·6H2O OD600 nm was increased to 1.34. The accumulated hydrogen volume was increased to 2 360.5 mL H2/L culture, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was increased to 1.3 and polysaccharide was decreased to 2.5 mg/L. Moreover, the magnesium solution addition to the medium at different fermentation times affected hydrogen-producing ability. However, the later the addition time was postponed, the less the effect was on hydrogen evolution. Further experiments confirmed the enhancement was dependent on magnesium ions and not on the other inorganic ions such as SO42- or Cl-, which constituted the magnesium salts.
基金Sponsored by Program of Shanghai Education Committee (Grant No07ZZ156)Key Subject Construction of Shanghai Education Committee(Grant NoP1402) the National Natural Science Fund of China(Grant No30470054)
文摘A method based on PCR amplification of the 16S rRNA gene (rDNA)-23S rDNA intergenic spacer regions (ISR) was developed for the identification of species within the novel group hydrogen-producing anaerobes. The sizes of the PCR products varied from 1264 to 398 bp. Strain of isolate Rennanqilyf 3 was characterized as having products of 1262,398,638,437 and 436 bp. The isolate Rennanqilyf 1 had product of 1264 bp. The isolate Rennanqilyf 13 had products of 1261,579 and 485 bp. Of the 3 species of the novel group hydrogen-producing anaerobes examined, no one was indistinguishable. Two environmental isolates were identified as hydrogen-producing bacteria, which were new species in present taxon. Rennanqilyf 3 could not be associated with any Clostridium sp. studied. Rennanqilyf 1 could be classified into Clostridium genus. The combination between 16S rDNA equencing and length polymorphisms of IRS in 16S-23S rDNA is a better method for determining species of the hydrogen-producing bacteria.
基金the National Natural Science Foundation of China (Nos.51731008,52250710159,51671163,51901198)the National Key Research and Development Program of China (No.2017YFB0702100)。
文摘It is a longstanding and challenging task to develop sustainable environment-friendly and cost-effective corrosion-protection technologies for Mg alloys, especially under marine conditions in which corrosion can normally be significantly accelerated by bacterial activity. However,this paper reports on the corrosion of highly active Mg interestingly inhibited by an algal-symbiotic bacterium Bacillus altitudinis. The corrosion of Mg in the presence of the bacterium drastically reduced by one order of magnitude after 14 days of immersion. This means that the algal-symbiotic bacterium widely available in natural ocean environments may be employed as a green and sustainable inhibitor in the marine industry. Based on electrochemical measurements, surface analyses and microbe experiments, a combined inhibition mechanism is proposed in the paper to interpret the interesting corrosion behavior of Mg.
基金Supported by Ecological Environment Construction and Protection Demonstration Project of Three Gorges~~
文摘[Objective] The aim was to explore the relationship between alage-lysing bacterium and Anabaena flosaquae so as to provide reference for the control of bloom. [Method] An algae-lysing bacterium strain named S7 was isolated from eu- trophic river. The lyric efficiency and performing mode of S7 strain to Anabaena flos- aquae was studied. Influence of different environmental factors and the relationship between S7 strain and Anabaena flosaquae was also studied, and then the bacteri- um strain was physiologically identified. [Result] More than 90% of Anabaena flos- aquae had been removed by 7 d when the volume ratio of medium to algae solu- tion was 30%, the pH was 9 and the temperature was 35 ℃. These results also showed that a mutual inhibit relationship existed between S7 strain and Anabaena flos-aquae. The S7 strain killed the algae by indirectly through certain lyric agents in absence of direct contact with the target but by secreting metabolites. Moreover, these lyric agents also had the thermostability. 16SrDNA sequence analysis showed that S7 strain belonged to Chryseobacterium sp. [Conclusion] The examined Poly-p proved that S7 strain is polyphosphate accumulating bacteria (PAOs) and has better lyric efficiency.