期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Controllable synthesis of core-shell Co@C@SiO2 catalysts for enhancing product selectivity in Fischer-Tropsch synthesis by tuning the mass transfer resistance 被引量:1
1
作者 Yao Chen Xin Li +5 位作者 Liya Dai Mehar U Nisa Chengchao Liu Shuai Lv Jing Lv Zhenhua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期199-206,共8页
Fischer-Tropsch synthesis(FTS) is the key step in converting syngas into clean fuels. Traditional supported catalysts for FTS are problematic because the active metal crystalline size is positively related to metal lo... Fischer-Tropsch synthesis(FTS) is the key step in converting syngas into clean fuels. Traditional supported catalysts for FTS are problematic because the active metal crystalline size is positively related to metal loading. Therefore, increasing active metal loading may reduce the cobalt time yield(CTY) since a high CTY is usually obtained when the Co size is 8 nm. Here, a ZIF-67(Zeolitic imidazolate framework-67) with a MOF(Metal organic framework) structure is used as a precursor to prepare the Co@C catalyst with not only high cobalt loading(55.6 wt%) but also with a small cobalt crystal size(as small as 8.6 nm). Coreshell Co@C@SiO2-X catalysts with different SiO2 shell thicknesses were successfully prepared by coating different amounts of TEOS on the outer surface of Co@C to modify product selectivity. Compared with40 wt% Co/SiO2 catalyst, core-shell Co@C@SiO2-X catalysts exhibited improved FTS performance. Furthermore, different gaseous hourly space velocities(GHSVs) were used to obtain CO conversion at similar levels to compare CTY and the turnover frequency(TOF). Among the catalysts, the Co@C@SiO2-1 catalyst, with its better mass transfer ability and suitable hydrophilic property, presented the highest TOF(9.75 × 10-3 s-1) and lowest CH4 selectivity(9.75%). In addition, heavy hydrocarbons were effectively suppressed with the increase in shell thickness due to the increased mass transfer resistance. 展开更多
关键词 Fischer-Tropsch synthesis ZIF-67 Product selectivity Core-shell catalyst hydrophilic property
下载PDF
IMPROVING HYDROPHILICITY AND PROTEIN ANTIFOULING OF ELECTROSPUN POLY(VINYLIDENEFLUORIDE-HEXAFLUOROPROPYLENE) NANOFIBER MEMBRANES 被引量:1
2
作者 李新松 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第5期705-713,共9页
Poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) nanofiber membranes with improved hydrophilicity and protein fouling resistance via surface graft copolymerization of hydrophilic monomers were prepared. The... Poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) nanofiber membranes with improved hydrophilicity and protein fouling resistance via surface graft copolymerization of hydrophilic monomers were prepared. The surface modification involves atmospheric pressure glow discharge plasma (APGDP) pretreatment followed by graft copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA). The success of the graft modification with PEGMA on the PVDF-HFP fibrous membrane is ascertained by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared measurements (ATR-FTIR). The hydrophilic property of the nanofiber membranes is assessed by water contact angle measurements. The results show that the PEGMA grafted PVDF-HFP nanofiber membrane has a water contact angle of 0° compared with the pristine value of 132°. The protein adsorption was effectively reduced after PEGMA grafting on the PVDF-HFP nanofiber membrane surface. The PEGMA polymer grafting density on the PVDF-HFP membrane surface is measured by the gravimetric method, and the filtration performance is characterized by the measurement of water flux. The results indicate that the water flux of the grafted PVDF-HFP fibrous membrane increases significantly with the increase of the PEGMA grafting density. 展开更多
关键词 Poly(vinylidenefluoride-hexafluoropropylene) Nanofiber membrane Graft polymerization hydrophilic property Protein fouling resistance.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部