Enhanced oil recovery(EOR)by means of polymer flooding is an important technology for the strategic development of offshore oilfields in China.Hydrophobically associating polyacrylamide(HAPAM)has been recently propose...Enhanced oil recovery(EOR)by means of polymer flooding is an important technology for the strategic development of offshore oilfields in China.Hydrophobically associating polyacrylamide(HAPAM)has been recently proposed as a new flooding agent.The solubility of HAPAM is low,which is the bottleneck for further improving the oil recovery through polymer flooding in offshore oilfield.Stirred tanks have been used on offshore platforms to enhance HAPAM dissolving.But there is little literature on the study of HAPAM dissolving characteristics in stirred tanks.In this paper,effects of temperature,salinity,stirring speed,impeller type and stirring method on the dissolution of HAPAM are reported.The experimental results manifest that the dissolving rate of HAPAM increases with temperature and stirring speed,but the viscosity of the polymer solution decreases.There is an optimal range of salinity for polymer dissolving.Combining the operation mode of up-pumping with varying stirring speed,hydrofoil impeller can accelerate the dissolution of HAPAM and maintain a high solution viscosity.展开更多
Hydrophobically associative polyacrylamide (HAPAM) were prepared in aqueous solution by radical copolymerization of novel cationic surface-active monomer, dimethylhexadecyl(3-acrylamidopropyl)ammonium bromide (DM...Hydrophobically associative polyacrylamide (HAPAM) were prepared in aqueous solution by radical copolymerization of novel cationic surface-active monomer, dimethylhexadecyl(3-acrylamidopropyl)ammonium bromide (DMHAB), with acrylamide (AM) in the presence of DMHAB/CTAB mixed micelles. The length of hydrophobic microblock (NH) in HAPAM is controlled by the molar fraction of DMHAB in mixed micelles, which can be mediated by the ratio of CTAB to DMHAB. The results of steady-state fluorescence probe and viscometry experiments showed the ability of HAPAM association was determined by the length of the hydrophobic microblock. HAPAM with tunable association ability are promising materials for thickening agent.展开更多
文摘Enhanced oil recovery(EOR)by means of polymer flooding is an important technology for the strategic development of offshore oilfields in China.Hydrophobically associating polyacrylamide(HAPAM)has been recently proposed as a new flooding agent.The solubility of HAPAM is low,which is the bottleneck for further improving the oil recovery through polymer flooding in offshore oilfield.Stirred tanks have been used on offshore platforms to enhance HAPAM dissolving.But there is little literature on the study of HAPAM dissolving characteristics in stirred tanks.In this paper,effects of temperature,salinity,stirring speed,impeller type and stirring method on the dissolution of HAPAM are reported.The experimental results manifest that the dissolving rate of HAPAM increases with temperature and stirring speed,but the viscosity of the polymer solution decreases.There is an optimal range of salinity for polymer dissolving.Combining the operation mode of up-pumping with varying stirring speed,hydrofoil impeller can accelerate the dissolution of HAPAM and maintain a high solution viscosity.
文摘Hydrophobically associative polyacrylamide (HAPAM) were prepared in aqueous solution by radical copolymerization of novel cationic surface-active monomer, dimethylhexadecyl(3-acrylamidopropyl)ammonium bromide (DMHAB), with acrylamide (AM) in the presence of DMHAB/CTAB mixed micelles. The length of hydrophobic microblock (NH) in HAPAM is controlled by the molar fraction of DMHAB in mixed micelles, which can be mediated by the ratio of CTAB to DMHAB. The results of steady-state fluorescence probe and viscometry experiments showed the ability of HAPAM association was determined by the length of the hydrophobic microblock. HAPAM with tunable association ability are promising materials for thickening agent.