The purpose of this research was to evaluate the nodulation potential of 31 Argentinean soybean commercial cultivars. Those with the highest nodulation capacity response developed twice the amount of nodules than the ...The purpose of this research was to evaluate the nodulation potential of 31 Argentinean soybean commercial cultivars. Those with the highest nodulation capacity response developed twice the amount of nodules than the low nodulating ones, which is the variation contained in soybean genotypes. Furthermore, this was not due to bacterial promiscuity, since the response was independent of the bradyrhizobia strain inoculated. The ability of cultivars to develop a larger number and biomass of nodules was unrelated with the maturity group they belong to and also was not a response to quorum sensing effects. Our results suggest that breeding programs can be aimed at improving the nodulation capacity of soybean and that cultivars from different maturity groups can be a source of nodulation QTLs.展开更多
Although root nodules are essential for biological nitrogen fixation in legumes,the cell types and molecular regulatory mechanisms contributing to nodule development and nitrogen fixation in determinate nodule legumes...Although root nodules are essential for biological nitrogen fixation in legumes,the cell types and molecular regulatory mechanisms contributing to nodule development and nitrogen fixation in determinate nodule legumes,such as soybean(Glycine max),remain incompletely understood.Here,we generated a single-nucleus resolution transcriptomic atlas of soybean roots and nodules at 14 days post inoculation(dpi)and annotated 17 major cell types,including six that are specific to nodules.We identified the specific cell types responsible for each step in the ureides synthesis pathway,which enables spatial compartmentalization of biochemical reactions during soybean nitrogen fixation.By utilizing RNA velocity analysis,we reconstructed the differentiation dynamics of soybean nodules,which differs from those of indeterminate nodules in Medicago truncatula.Moreover,we identified several putative regulators of soybean nodulation and two of these genes,GmbHLH93 and GmSCL1,were as-yet uncharacterized in soybean.Overexpression of each gene in soybean hairy root systems validated their respective roles in nodulation.Notably,enrichment for cytokinin-related genes in soybean nodules led to identification of the cytokinin receptor,GmCRE1,as a prominent component of the nodulation pathway.GmCRE1 knockout in soybean resulted in a striking nodule phenotype with decreased nitrogen fixation zone and depletion of leghemoglobins,accompanied by downregulation of nodule-specific gene expression,as well as almost complete abrogation of biological nitrogen fixation.In summary,this study provides a comprehensive perspective of the cellular landscape during soybean nodulation,shedding light on the underlying metabolic and developmental mechanisms of soybean nodule formation.展开更多
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr...Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.展开更多
Rhizobia, crucial for nitrogen fixation in leguminous plants, play a vital role in soybean cultivation. This study, conducted in Mexico, a major soybean importer, aimed to identify bacteria from nodules of five soybea...Rhizobia, crucial for nitrogen fixation in leguminous plants, play a vital role in soybean cultivation. This study, conducted in Mexico, a major soybean importer, aimed to identify bacteria from nodules of five soybean varieties in high-production regions. Multilocus sequence analysis (MLSA) was employed for enhanced species resolution. The study identified six Bradyrhizobium species: Bradyrhizobium japonicum USDA 110, Bradyrhizobium japonicum USDA 6, Bradyrhizobium elkanii USDA 76, Bradyrhizobium neotropicale, Bradyrhizobium lablabi, and Bradyrhizobium icense. Bradyrhizobium japonicum USDA 110 predominated in the soils, displaying symbiotic preference for the Huasteca 400 variety. However, phylogenetic analysis didn't reveal a clear association between strains, soil, and soybean variety. This research sheds light on the diversity of rhizobia in Mexican soybean cultivation, contributing to the understanding of symbiotic relationships in soybean production systems.展开更多
Phosphorus (P) is necessary for growth and nitrogen fixation, and thus its deficiency is a major factor limiting legume production in most agricultural soils. The effect of phosphorus supply on nodule development and ...Phosphorus (P) is necessary for growth and nitrogen fixation, and thus its deficiency is a major factor limiting legume production in most agricultural soils. The effect of phosphorus supply on nodule development and its role in soybeans (Glycine max L.) was studied in a nutrient solution. Plants were inoculated with Bradyrhizobium japonicum and grown for 35 days in a glasshouse at a day and night temperature of 25℃and 15℃, respectively. Although increasing P supply increased the concentrations of P and N in the shoots and roots, the external P supply did not significantly affect the P concentration in the nodules, and the N fixed per unit nodule biomass decreased with increasing P supply. The nitrogen content in the shoots correlated well with the P content (r = 0.92**). At an inoculation level of 102 cells mL-1, the P supply did not affect the number of nodules; however, at inoculation levels of 103.5 and 105 cells mL-1, increasing P supply increased both the number and size of nodules. Irrespective of the inoculation level, increasing P supply increased the nodule biomass relative to the biomass of the host plant. It is suggested that the P deficiency specifically inhibited the nodule development and thereby the total N2 fixation.展开更多
Soybean(Glycine max[L.]Merr.)is an important crop that provides protein and vegetable oil for human consumption.As soybean is a photoperiod-sensitive crop,its cultivation and yield are limited by the photoperiodic con...Soybean(Glycine max[L.]Merr.)is an important crop that provides protein and vegetable oil for human consumption.As soybean is a photoperiod-sensitive crop,its cultivation and yield are limited by the photoperiodic conditions in the field.In contrast to other major crops,soybean has a special plant architecture and a special symbiotic nitrogen fixation system,representing two unique breeding directions.Thus,flowering time,plant architecture,and symbiotic nitrogen fixation are three critical or unique yielddetermining factors.This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean.Meanwhile,we propose potential research directions to increase soybean production,discuss the application of genomics and genomic-assisted breeding,and explore research directions to address future challenges,particularly those posed by global climate changes.展开更多
文摘The purpose of this research was to evaluate the nodulation potential of 31 Argentinean soybean commercial cultivars. Those with the highest nodulation capacity response developed twice the amount of nodules than the low nodulating ones, which is the variation contained in soybean genotypes. Furthermore, this was not due to bacterial promiscuity, since the response was independent of the bradyrhizobia strain inoculated. The ability of cultivars to develop a larger number and biomass of nodules was unrelated with the maturity group they belong to and also was not a response to quorum sensing effects. Our results suggest that breeding programs can be aimed at improving the nodulation capacity of soybean and that cultivars from different maturity groups can be a source of nodulation QTLs.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-011)National Key Research and Development Program of China(2021YFF1000103)。
文摘Although root nodules are essential for biological nitrogen fixation in legumes,the cell types and molecular regulatory mechanisms contributing to nodule development and nitrogen fixation in determinate nodule legumes,such as soybean(Glycine max),remain incompletely understood.Here,we generated a single-nucleus resolution transcriptomic atlas of soybean roots and nodules at 14 days post inoculation(dpi)and annotated 17 major cell types,including six that are specific to nodules.We identified the specific cell types responsible for each step in the ureides synthesis pathway,which enables spatial compartmentalization of biochemical reactions during soybean nitrogen fixation.By utilizing RNA velocity analysis,we reconstructed the differentiation dynamics of soybean nodules,which differs from those of indeterminate nodules in Medicago truncatula.Moreover,we identified several putative regulators of soybean nodulation and two of these genes,GmbHLH93 and GmSCL1,were as-yet uncharacterized in soybean.Overexpression of each gene in soybean hairy root systems validated their respective roles in nodulation.Notably,enrichment for cytokinin-related genes in soybean nodules led to identification of the cytokinin receptor,GmCRE1,as a prominent component of the nodulation pathway.GmCRE1 knockout in soybean resulted in a striking nodule phenotype with decreased nitrogen fixation zone and depletion of leghemoglobins,accompanied by downregulation of nodule-specific gene expression,as well as almost complete abrogation of biological nitrogen fixation.In summary,this study provides a comprehensive perspective of the cellular landscape during soybean nodulation,shedding light on the underlying metabolic and developmental mechanisms of soybean nodule formation.
基金supported by the China Agriculture Research System of MOF and MARA(Soybean,CARS04-PS20)the National Natural Science Foundation of China(3187101212 and 31671625).
文摘Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation.
文摘Rhizobia, crucial for nitrogen fixation in leguminous plants, play a vital role in soybean cultivation. This study, conducted in Mexico, a major soybean importer, aimed to identify bacteria from nodules of five soybean varieties in high-production regions. Multilocus sequence analysis (MLSA) was employed for enhanced species resolution. The study identified six Bradyrhizobium species: Bradyrhizobium japonicum USDA 110, Bradyrhizobium japonicum USDA 6, Bradyrhizobium elkanii USDA 76, Bradyrhizobium neotropicale, Bradyrhizobium lablabi, and Bradyrhizobium icense. Bradyrhizobium japonicum USDA 110 predominated in the soils, displaying symbiotic preference for the Huasteca 400 variety. However, phylogenetic analysis didn't reveal a clear association between strains, soil, and soybean variety. This research sheds light on the diversity of rhizobia in Mexican soybean cultivation, contributing to the understanding of symbiotic relationships in soybean production systems.
基金Project supported by the National Basic Research Program of China (Nos. 2005CB121101 and 2003CCB001)the Basic Research Program of Heilongjiang Province (Nos. GB05C201-01 and CC055303)the Field Station Foundation of the Chinese Academy of Sciences.
文摘Phosphorus (P) is necessary for growth and nitrogen fixation, and thus its deficiency is a major factor limiting legume production in most agricultural soils. The effect of phosphorus supply on nodule development and its role in soybeans (Glycine max L.) was studied in a nutrient solution. Plants were inoculated with Bradyrhizobium japonicum and grown for 35 days in a glasshouse at a day and night temperature of 25℃and 15℃, respectively. Although increasing P supply increased the concentrations of P and N in the shoots and roots, the external P supply did not significantly affect the P concentration in the nodules, and the N fixed per unit nodule biomass decreased with increasing P supply. The nitrogen content in the shoots correlated well with the P content (r = 0.92**). At an inoculation level of 102 cells mL-1, the P supply did not affect the number of nodules; however, at inoculation levels of 103.5 and 105 cells mL-1, increasing P supply increased both the number and size of nodules. Irrespective of the inoculation level, increasing P supply increased the nodule biomass relative to the biomass of the host plant. It is suggested that the P deficiency specifically inhibited the nodule development and thereby the total N2 fixation.
基金supported by the National Natural Science Foundation of China(32090064 and 32001503)the National Key Research and Development Program of China(2022YFD1201400)。
文摘Soybean(Glycine max[L.]Merr.)is an important crop that provides protein and vegetable oil for human consumption.As soybean is a photoperiod-sensitive crop,its cultivation and yield are limited by the photoperiodic conditions in the field.In contrast to other major crops,soybean has a special plant architecture and a special symbiotic nitrogen fixation system,representing two unique breeding directions.Thus,flowering time,plant architecture,and symbiotic nitrogen fixation are three critical or unique yielddetermining factors.This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean.Meanwhile,we propose potential research directions to increase soybean production,discuss the application of genomics and genomic-assisted breeding,and explore research directions to address future challenges,particularly those posed by global climate changes.