Soft ferrites have excellent a.c.permeability, but it is reduced under stress.It has a hyperbolic re- lationship between permeability μ and stress σ or a linear increase of 1/μ with σ.It is also found that the str...Soft ferrites have excellent a.c.permeability, but it is reduced under stress.It has a hyperbolic re- lationship between permeability μ and stress σ or a linear increase of 1/μ with σ.It is also found that the stress sensitive factor α depends on sample porosity p.For fully densified Mn-Zn ferrites α is only 10^(-7)~10^(-8) MPa^(-1),but it increases to 6× 10^(-6) MPa^(-1) for samples containing closed porosity 6%.Such materials could be used as a sensor for measuring pressure。展开更多
To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal t...To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal that the shape of the strength envelope on the π plane gradually changes from the shape of the Lade criterion to the shape of the Drucker-Prage criterion with an increase in hydrostatic stress.Normally, there exists a deviation between the strain and stress paths for porous rocks on the π plane,and the deviation decreases with an increase in stress Lode angle and hydrostatic stress. A rock failure hypothesis based on the rock porous structure was proposed to investigate the reasons for the abovementioned phenomena. It was found that the shear expansion in the minimum principal stress direction is the dominant factor affecting the Lode angle effect(LAE);the magnitude of the hydrostatic stress induces the variation of the porous structure and influences the shear expansion. Therefore, the hydrostatic stress state affects the LAE. The failure hypothesis proposed in this paper can clarify the hydrostatic stress effect, LAE, and the variation of the rock strength envelope shape.展开更多
A new yield function taking effect of hydrostatic stress into account is presented through establishing and solving the functional equation satisfied by the yield function, and its characteristic is simple in form and...A new yield function taking effect of hydrostatic stress into account is presented through establishing and solving the functional equation satisfied by the yield function, and its characteristic is simple in form and strong in generality. In order to reveal its availability, a comparison is made between the results obtained with it and the experimental results of grey cast iron has be done, both seem to be in good agreement. At the same time, taking the yield function obtained here as a potential function, a new associative plastic constitutive equation taking effect of hydrostatic stress into account is built, and the plastic volume change ratio of plastic deformation is given.展开更多
This work focuses on numerical modeling of hydrostatic stress, which is critical to the formation of stress-induced voiding (SIV) in copper damascene interconnects. Using three-dimensional finite element analysis, t...This work focuses on numerical modeling of hydrostatic stress, which is critical to the formation of stress-induced voiding (SIV) in copper damascene interconnects. Using three-dimensional finite element analysis, the distribution of hydrostatic stress is examined in copper interconnects and models are based on the samples, which are fabricated in industry. In addition, hydrostatic stress is studied through the influences of different low-k dielectrics, barrier layers and line widths of copper lines, and the results indicate that hydrostatic stress is strongly dependent on these factors. Hydrostatic stress is highly non-uniform throughout the copper structure and the highest tensile hydrostatic stress exists on the top interface of all the copper lines.展开更多
Hydrostatic stresses of copper dual-damascene interconnects are calculated by a commercial finite element software in this paper.The analytical work is performed to examine the effects of different low-k(k is permitti...Hydrostatic stresses of copper dual-damascene interconnects are calculated by a commercial finite element software in this paper.The analytical work is performed to examine the effects of different low-k(k is permittivity)dielectrics,barrier layer and aspect ratio of via on hydrostatic stress distribution in the copper interconnects.The results of calculation indicate that the hydrostatic stresses are highly non-uniform throughout the copper interconnects and the highest tensile hydrostatic stress exists on the top interface of lower level interconnect near via.Both the high coefficient of thermal expansion and the low elastic modulus of the low-k dielectrics and barrier layer can decrease the highest hydrostatic stress on the top interface,which can improve the reliability of the copper interconnects.展开更多
Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deformation of solid c...Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deformation of solid coal. Especially for enhanced coal bed methane(ECBM) and CO2 capture and sequestration(CCS), gas injection is mainly controlled by the gas diffusivity in the coal matrix and coal permeability.Although the relevant coal permeability models have been frequently developed, how the dual-porosity system of coal affects gas adsorption/diffusion is still poorly understood. In this paper, a series of experiments were carried out in order to investigate deformation evolution of intact coal subjected to hydrostatic pressure of different gases(including pure H2, N2 and CO2) under isotherm injection. In the testing process, the coal strain and injected gas pressure were measured simultaneously. The results show that the pressure of non-adsorptive helium remained unchanged throughout the isothermal injection process, in which the volumetric strain of the coal shrinked firstly and maintained unchanged at lower isobaric pressure. With the injected pressure increasing, the coal volume underwent a transition from shrinking to recovery(still less than initial volume of the coal). In contrast, N2 injection caused the coal to shrink firstly and then recover with decreasing gas pressure. The recovery volume was larger than the initial volume due to adsorption-induced swelling. For the case of CO2 injection, although the stronger adsorption effect could result in swelling of the solid coal, the presence of higher gas pressure appears to contribute the swelling coal to shrink. These results indicate that the evolution of coal deformation is time dependent throughout the migration of injected gas. From the mechanical characteristics of poroelastical materials, distribution of pore pressure within the coal is to vary with the gas injection,during which the pore pressure in the cleats will rapidly increase, in contrast, the pore pressure in the matrix will hysteretically elevate. Such a difference on changes of pore pressure between the cleats and the matrix will contribute to the shrinkage of the matrix as a result of initially greater effective stress.Besides, both gas-adsorption-induced swelling and decreasing effective stress also control the coal deformation transition. This work gives us an insight into investigation on influence of effective stress on coal-gas interaction.展开更多
文摘Soft ferrites have excellent a.c.permeability, but it is reduced under stress.It has a hyperbolic re- lationship between permeability μ and stress σ or a linear increase of 1/μ with σ.It is also found that the stress sensitive factor α depends on sample porosity p.For fully densified Mn-Zn ferrites α is only 10^(-7)~10^(-8) MPa^(-1),but it increases to 6× 10^(-6) MPa^(-1) for samples containing closed porosity 6%.Such materials could be used as a sensor for measuring pressure。
文摘To investigate the deformation mechanisms of rock under hydrostatic stress, destructive experiments were conducted on sandstone under different levels of hydrostatic stress and stress Lode angles. The results reveal that the shape of the strength envelope on the π plane gradually changes from the shape of the Lade criterion to the shape of the Drucker-Prage criterion with an increase in hydrostatic stress.Normally, there exists a deviation between the strain and stress paths for porous rocks on the π plane,and the deviation decreases with an increase in stress Lode angle and hydrostatic stress. A rock failure hypothesis based on the rock porous structure was proposed to investigate the reasons for the abovementioned phenomena. It was found that the shear expansion in the minimum principal stress direction is the dominant factor affecting the Lode angle effect(LAE);the magnitude of the hydrostatic stress induces the variation of the porous structure and influences the shear expansion. Therefore, the hydrostatic stress state affects the LAE. The failure hypothesis proposed in this paper can clarify the hydrostatic stress effect, LAE, and the variation of the rock strength envelope shape.
文摘A new yield function taking effect of hydrostatic stress into account is presented through establishing and solving the functional equation satisfied by the yield function, and its characteristic is simple in form and strong in generality. In order to reveal its availability, a comparison is made between the results obtained with it and the experimental results of grey cast iron has be done, both seem to be in good agreement. At the same time, taking the yield function obtained here as a potential function, a new associative plastic constitutive equation taking effect of hydrostatic stress into account is built, and the plastic volume change ratio of plastic deformation is given.
基金Proiect supported by the National Natural Science Foundation of China(No.50871016).
文摘This work focuses on numerical modeling of hydrostatic stress, which is critical to the formation of stress-induced voiding (SIV) in copper damascene interconnects. Using three-dimensional finite element analysis, the distribution of hydrostatic stress is examined in copper interconnects and models are based on the samples, which are fabricated in industry. In addition, hydrostatic stress is studied through the influences of different low-k dielectrics, barrier layers and line widths of copper lines, and the results indicate that hydrostatic stress is strongly dependent on these factors. Hydrostatic stress is highly non-uniform throughout the copper structure and the highest tensile hydrostatic stress exists on the top interface of all the copper lines.
基金the National Natural Science Foundation of China(No.50871016)
文摘Hydrostatic stresses of copper dual-damascene interconnects are calculated by a commercial finite element software in this paper.The analytical work is performed to examine the effects of different low-k(k is permittivity)dielectrics,barrier layer and aspect ratio of via on hydrostatic stress distribution in the copper interconnects.The results of calculation indicate that the hydrostatic stresses are highly non-uniform throughout the copper interconnects and the highest tensile hydrostatic stress exists on the top interface of lower level interconnect near via.Both the high coefficient of thermal expansion and the low elastic modulus of the low-k dielectrics and barrier layer can decrease the highest hydrostatic stress on the top interface,which can improve the reliability of the copper interconnects.
基金founded by the National Natural Science Foundation of China(Nos.41202194,41172116,and2013M542097)the Natural Science Foundation of Shandong Province,China(No.ZR2012EEQ021)+1 种基金‘‘Leading Talent Plan’’ of Shandong University of Science and Technology,Chinaresearch groups for ‘‘Taishan Scholar’’ and ‘‘Controlon Instability of Deep Surrounding Rocks’’ of SDUST
文摘Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deformation of solid coal. Especially for enhanced coal bed methane(ECBM) and CO2 capture and sequestration(CCS), gas injection is mainly controlled by the gas diffusivity in the coal matrix and coal permeability.Although the relevant coal permeability models have been frequently developed, how the dual-porosity system of coal affects gas adsorption/diffusion is still poorly understood. In this paper, a series of experiments were carried out in order to investigate deformation evolution of intact coal subjected to hydrostatic pressure of different gases(including pure H2, N2 and CO2) under isotherm injection. In the testing process, the coal strain and injected gas pressure were measured simultaneously. The results show that the pressure of non-adsorptive helium remained unchanged throughout the isothermal injection process, in which the volumetric strain of the coal shrinked firstly and maintained unchanged at lower isobaric pressure. With the injected pressure increasing, the coal volume underwent a transition from shrinking to recovery(still less than initial volume of the coal). In contrast, N2 injection caused the coal to shrink firstly and then recover with decreasing gas pressure. The recovery volume was larger than the initial volume due to adsorption-induced swelling. For the case of CO2 injection, although the stronger adsorption effect could result in swelling of the solid coal, the presence of higher gas pressure appears to contribute the swelling coal to shrink. These results indicate that the evolution of coal deformation is time dependent throughout the migration of injected gas. From the mechanical characteristics of poroelastical materials, distribution of pore pressure within the coal is to vary with the gas injection,during which the pore pressure in the cleats will rapidly increase, in contrast, the pore pressure in the matrix will hysteretically elevate. Such a difference on changes of pore pressure between the cleats and the matrix will contribute to the shrinkage of the matrix as a result of initially greater effective stress.Besides, both gas-adsorption-induced swelling and decreasing effective stress also control the coal deformation transition. This work gives us an insight into investigation on influence of effective stress on coal-gas interaction.