Based on the theories of hydraulics and nonlinear control system, the model of hydroviscous drive (HVD) was established, the influences of small ripple of control oil pressure on the output speed of HVD and the stabil...Based on the theories of hydraulics and nonlinear control system, the model of hydroviscous drive (HVD) was established, the influences of small ripple of control oil pressure on the output speed of HVD and the stability of oil film between friction disks were analyzed. The conclusion presents that when the frequency of the control oil's pressure ripple is higher than 60?Hz and the peak is less than 0 05?MPa, HVD can work stably. The result is useful for studying the application of frequency conversion technology in regulation of control oil pressure.展开更多
The flow field of the oil film between frictional pairs in the hydroviscous drive test rig is investigated. A three-dimensional Navier-Stokes(N-S) equation considering viscous force and inertial force rather than Re...The flow field of the oil film between frictional pairs in the hydroviscous drive test rig is investigated. A three-dimensional Navier-Stokes(N-S) equation considering viscous force and inertial force rather than Reynolds equation or modified Reynolds equation is presented to model the flow field. Pressure and temperature distribution in radial and circumferential direction under three different conditions, i.e., isothermal, that considering viscosity-temperature characteristic as well as shear thinning non-Newtonian fluid are simulated, respectively, by utilizing the commercial computational fluid dynamics(CFD) software FLUENT. The results reveal that the grooves on the driven plate make the pressure, temperature distribution present periodic variation. The oil temperature and shear rate have important effects on the flow field between frictional pairs, and the oil temperature is more important parameter. The simulation results lay a theoretical foundation for the reasonable designs ofhydroviscous drive.展开更多
Gives a dynamic mathematical model of a typical type of multiple discs hydroviscous drive device which has been proved to be correct through tests.Utilizing the method of root-locus analysis the dynamic performance of...Gives a dynamic mathematical model of a typical type of multiple discs hydroviscous drive device which has been proved to be correct through tests.Utilizing the method of root-locus analysis the dynamic performance of this device is studied according to the model.Theoretical analysis and test re- suits show that the dynamic performance of the object of study can be greatly improved by speed negative feedback.展开更多
Aim To carry out an experiment of the application of ER fluids in the clutch by reforming a fan clutch used in a truck. Methods At three different input rotating speeds,when the strength of applied electric field was ...Aim To carry out an experiment of the application of ER fluids in the clutch by reforming a fan clutch used in a truck. Methods At three different input rotating speeds,when the strength of applied electric field was changed, the output rotating speeds were recorded and analyzed. Results By comparing the results got under different experimental procedures with those measured with an electro-rheometer, it can be seen that the shearing rate has tremendous influence on the speed modulating of a fan clutch. This is because the disperse phase can't form chains (clusters)easily at high shear rate.Conclusion The result tested on the present ER fluid demonstrates that this fluid will show the properties of Newton one,i.e. its apparent viscosity is constant. as the shear rate increases.展开更多
文摘Based on the theories of hydraulics and nonlinear control system, the model of hydroviscous drive (HVD) was established, the influences of small ripple of control oil pressure on the output speed of HVD and the stability of oil film between friction disks were analyzed. The conclusion presents that when the frequency of the control oil's pressure ripple is higher than 60?Hz and the peak is less than 0 05?MPa, HVD can work stably. The result is useful for studying the application of frequency conversion technology in regulation of control oil pressure.
基金National Natural Science Foundation of China(No.50475106)
文摘The flow field of the oil film between frictional pairs in the hydroviscous drive test rig is investigated. A three-dimensional Navier-Stokes(N-S) equation considering viscous force and inertial force rather than Reynolds equation or modified Reynolds equation is presented to model the flow field. Pressure and temperature distribution in radial and circumferential direction under three different conditions, i.e., isothermal, that considering viscosity-temperature characteristic as well as shear thinning non-Newtonian fluid are simulated, respectively, by utilizing the commercial computational fluid dynamics(CFD) software FLUENT. The results reveal that the grooves on the driven plate make the pressure, temperature distribution present periodic variation. The oil temperature and shear rate have important effects on the flow field between frictional pairs, and the oil temperature is more important parameter. The simulation results lay a theoretical foundation for the reasonable designs ofhydroviscous drive.
文摘Gives a dynamic mathematical model of a typical type of multiple discs hydroviscous drive device which has been proved to be correct through tests.Utilizing the method of root-locus analysis the dynamic performance of this device is studied according to the model.Theoretical analysis and test re- suits show that the dynamic performance of the object of study can be greatly improved by speed negative feedback.
文摘Aim To carry out an experiment of the application of ER fluids in the clutch by reforming a fan clutch used in a truck. Methods At three different input rotating speeds,when the strength of applied electric field was changed, the output rotating speeds were recorded and analyzed. Results By comparing the results got under different experimental procedures with those measured with an electro-rheometer, it can be seen that the shearing rate has tremendous influence on the speed modulating of a fan clutch. This is because the disperse phase can't form chains (clusters)easily at high shear rate.Conclusion The result tested on the present ER fluid demonstrates that this fluid will show the properties of Newton one,i.e. its apparent viscosity is constant. as the shear rate increases.