Layers of ante-polymerized PMMA ( Polymethylmethacrylate ) ore manually smeared on both sides of carbon fiber and polyester fiber to a certain thickness. It was pre-solidified, stripped and cut for sterilization. B...Layers of ante-polymerized PMMA ( Polymethylmethacrylate ) ore manually smeared on both sides of carbon fiber and polyester fiber to a certain thickness. It was pre-solidified, stripped and cut for sterilization. Based on the results of a series of experiments, HA coated artificial bone is considered to be a non-senshizing, non- irritant, and non- toxic biomaterial for medical applications. The artificial bone has excellent mechanical and biological property. And it conforms to the national standard requirement. Safety analysis guarantees h a prosperous future of clinical application.展开更多
To develop synthesized coralline hydroxyl apatite (CHA) bone graftsubstitute and measure its physical and chemical characteristics. Methods: The CHA bone graft substitute was synthesized from natural mineral―corallin...To develop synthesized coralline hydroxyl apatite (CHA) bone graftsubstitute and measure its physical and chemical characteristics. Methods: The CHA bone graft substitute was synthesized from natural mineral―coralline through hydrothermal exchange process. This process was designed and developed independently by the authors. Its physical and chemical characteristics have been determined and studied using various techniques including Scanning Electron Microscopy (SEM), electron microscope image processing, scanning electron microscope energy spectrography; chemical analysis, ICP-AES, X-ray diffraction, etc. Clinical trials have been conducted. Results: Independently developed CHA bone graft-substitute is white in color; its porosity is 25.87%–53.58%, which is approximate to that of human bones and original coral. It is larger than 3–4 in hardness by Mohs hardness scale and the compressive strength ranges from 4.87 to 12.31 MPa. The chemical compositions of the CHA are 53.13%–64.09% CaO and 35.52%–46.48% P2O5. CaO/P2O5 is 1.143–1.804. ICP-AES analysis detected twenty-four trace elements including Pb, Co, Ni, Ba, Mn, Cr, Th, V, Cu, Ti, K, Mo, Zn, Mg, Nb, Be, Sc, Al, Sr, Na, Li, etc. Ca, P, K, Na, Al and Sr are relatively high while the rest are less than n–n×10-6, which is acceptable by human body. The REE level in the CHA bone measured by ICP-MS is 1.433×10-9–2.212×10-9, which is within the acceptable range for human beings. Conclusions: The process of synthesized CHA bone graft-substitute is an innovated independently developed method and concept. Its color, porosity and chemical composition are similar to those of human bones; therefore it has very good biocompatibility and excellent conductivity. Sixty clinical cases have proved that CHA bone graft-substitute has a strong bone-forming ability, no toxicity, no side effect, and better sacralization. It is a fine substitute for bone transplantation.展开更多
In this study, we use a pluripotent mesenchymal stem cell (MSC) model, C3H/10T1/2, to evaluate three calcium phos-phate (CaP) materials, namely the hydroxyapatite (HA), α-tricalcium phosphate (α-TCP) and β-tricalci...In this study, we use a pluripotent mesenchymal stem cell (MSC) model, C3H/10T1/2, to evaluate three calcium phos-phate (CaP) materials, namely the hydroxyapatite (HA), α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP). 10T1/2 cell was chosen as it has advantages over its counterparts in terms of ease of maintenance, free of ethical concerns and also more reproducible results. ALP enzymatic assay, RT-qPCR, DAPI staining and SEM were employed to assess the osteoinductivity of these materials. A good reference material which also acts as a scientific control is necessary for comparisons of results from different experimental batches and hence other materials such as titanium, Nunclon plastic surface, BD Falcon plastic surface and gold coated porous HA were also tested. The results show that ceramics induce a more sustained osteo-differentiation state as compared with plastics. Inductivity was found to be acting in descending order of strength with HA > β-TCP > α-TCP, which is reversed in terms of their impact on proliferation rate (HA TCP) and in vivo osteoinductivity in terms of incidence and quality of bone described previously (HA > β-TCP > α-TCP). These confirm the suitability of using 10T1/2 cells in cell culture assay of osteoinductivity.展开更多
文摘Layers of ante-polymerized PMMA ( Polymethylmethacrylate ) ore manually smeared on both sides of carbon fiber and polyester fiber to a certain thickness. It was pre-solidified, stripped and cut for sterilization. Based on the results of a series of experiments, HA coated artificial bone is considered to be a non-senshizing, non- irritant, and non- toxic biomaterial for medical applications. The artificial bone has excellent mechanical and biological property. And it conforms to the national standard requirement. Safety analysis guarantees h a prosperous future of clinical application.
基金supportedby the funds from both Science-Technology Department of Guangdong and Science-Technology Department of Guangzhou
文摘To develop synthesized coralline hydroxyl apatite (CHA) bone graftsubstitute and measure its physical and chemical characteristics. Methods: The CHA bone graft substitute was synthesized from natural mineral―coralline through hydrothermal exchange process. This process was designed and developed independently by the authors. Its physical and chemical characteristics have been determined and studied using various techniques including Scanning Electron Microscopy (SEM), electron microscope image processing, scanning electron microscope energy spectrography; chemical analysis, ICP-AES, X-ray diffraction, etc. Clinical trials have been conducted. Results: Independently developed CHA bone graft-substitute is white in color; its porosity is 25.87%–53.58%, which is approximate to that of human bones and original coral. It is larger than 3–4 in hardness by Mohs hardness scale and the compressive strength ranges from 4.87 to 12.31 MPa. The chemical compositions of the CHA are 53.13%–64.09% CaO and 35.52%–46.48% P2O5. CaO/P2O5 is 1.143–1.804. ICP-AES analysis detected twenty-four trace elements including Pb, Co, Ni, Ba, Mn, Cr, Th, V, Cu, Ti, K, Mo, Zn, Mg, Nb, Be, Sc, Al, Sr, Na, Li, etc. Ca, P, K, Na, Al and Sr are relatively high while the rest are less than n–n×10-6, which is acceptable by human body. The REE level in the CHA bone measured by ICP-MS is 1.433×10-9–2.212×10-9, which is within the acceptable range for human beings. Conclusions: The process of synthesized CHA bone graft-substitute is an innovated independently developed method and concept. Its color, porosity and chemical composition are similar to those of human bones; therefore it has very good biocompatibility and excellent conductivity. Sixty clinical cases have proved that CHA bone graft-substitute has a strong bone-forming ability, no toxicity, no side effect, and better sacralization. It is a fine substitute for bone transplantation.
文摘In this study, we use a pluripotent mesenchymal stem cell (MSC) model, C3H/10T1/2, to evaluate three calcium phos-phate (CaP) materials, namely the hydroxyapatite (HA), α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP). 10T1/2 cell was chosen as it has advantages over its counterparts in terms of ease of maintenance, free of ethical concerns and also more reproducible results. ALP enzymatic assay, RT-qPCR, DAPI staining and SEM were employed to assess the osteoinductivity of these materials. A good reference material which also acts as a scientific control is necessary for comparisons of results from different experimental batches and hence other materials such as titanium, Nunclon plastic surface, BD Falcon plastic surface and gold coated porous HA were also tested. The results show that ceramics induce a more sustained osteo-differentiation state as compared with plastics. Inductivity was found to be acting in descending order of strength with HA > β-TCP > α-TCP, which is reversed in terms of their impact on proliferation rate (HA TCP) and in vivo osteoinductivity in terms of incidence and quality of bone described previously (HA > β-TCP > α-TCP). These confirm the suitability of using 10T1/2 cells in cell culture assay of osteoinductivity.