Hydroxypropyl celluloses(HPC) were homogenously synthesized by the reaction of cellulose with propylene oxide in NaOH/urea aqueous solution.Water-soluble HPC with molar degree of substitution(MSNMR) in the range of 0....Hydroxypropyl celluloses(HPC) were homogenously synthesized by the reaction of cellulose with propylene oxide in NaOH/urea aqueous solution.Water-soluble HPC with molar degree of substitution(MSNMR) in the range of 0.52~0.78 was prepared from microcrystalline cellulose,cotton linters,and spruce sulfite pulp.The structure of the HPC samples was characterized by means of FT-IR,NMR,gas chromatography(GC),and size exclusion chromatography(SEC) analyses.Three types of cellulose samples with different molecular weights were found to dissolve well in the NaOH/urea solvent with no obvious differences in reactivity and regioselectivity.The relative reactivity of hydroxyl groups in the glycosyl unit was in the following order:O-6>O-2>O-3.In addition,the results of the study indicated that the tandem reaction during hydroxypropylation could be ignored.展开更多
The novel amphiphilic graft copolymers with hydrophilic hard polar hydroxypropyl cellulose(HPC)backbone and hydrophobic soft nonpolar polyisobutylene(PIB)branches have been successfully synthesized through nucleophili...The novel amphiphilic graft copolymers with hydrophilic hard polar hydroxypropyl cellulose(HPC)backbone and hydrophobic soft nonpolar polyisobutylene(PIB)branches have been successfully synthesized through nucleophilic substitution reaction of living PIB chains carrying oxonium ions with the-OH groups along HPC backbone.The PIB branch length in the graft copolymers could be designed by living cationic polymerization and the grafting density could be adjusted by PIB+/-OH molar ratio.The living PIB chains carrying oxonium ion were prepared by transformation of allyl bromide end groups in the presence of AgCI0_(4) and silver nanoparticles(3.2±0.3 nm,0.7 wt%-1.8 wt%)generated in situ from AgBr.The phase-separation morphology was formed in the graft copolymers due to their incompatibility between backbone and branches.The hydrophilicity on the surface of graft copolymer films could be turned to hydrophobicity by increasing grafting density or/and length of PIB branches.The soft PIB segments in graft copolymers provided an unique surface wa self-assembly for ant卜protein adsorption against bovine serum albumin.A small amount of Ag nanoparticles in the copolymers contributed to good antibacterial activities against Staphylococcus aureus or Escherichia coli.展开更多
Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FT...Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FTIR and TG-DTG. The results show that HPMC can significantly delay the hydration induction period and acceleration period of cement pastes. As mixing amount increased, hydration induction period of cement pastes enlarged and accelerated period gradually went back. At the same time, the amount of hydration heat gradually decreased. Expanded perlite had worse delay effects and less change of hydration heat amount of cement pastes than HPMC. HPMC changed the structure of C-S-H during cement hydration. The more amount of HPMC, the more obvious effect. However, EXP had little influence on the structure of C-S-H. At the same age, the content of Ca (OH)2 in cement pastes gradually decreased as the mixing amount increase of HPMC and expanded perlite, and had better delay effect than that single-doped with HPMC or expanded perlite when HPMC and expanded nerlite were both dooed in cement pastes.展开更多
Hydroxypropyl methyl cellulose(HPMC)-based hybrid nanocomposites reinforced with bacterial cellulose nanocrystals(BCNC) were prepared and characterized.The HPMC nanocomposites exhibited good thermal stability,with a t...Hydroxypropyl methyl cellulose(HPMC)-based hybrid nanocomposites reinforced with bacterial cellulose nanocrystals(BCNC) were prepared and characterized.The HPMC nanocomposites exhibited good thermal stability,with a thermogravimetric peak temperature of around 346℃.The addition of BCNC did not significantly affect the thermal degradation temperature or improve the transparency of HPMC nanocomposites.However,the addition of BCNC favorably affected the light scattering properties of the nanocomposites and enhanced mechanical properties such as tensile stress and Young's modulus from 65 MPa and 1.5 GPa up to 139 MPa and 3.2 GPa,respectively.The oxygen permeability of the HPMC nanocomposites also increased with increase in the amount of BCNC added.展开更多
Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,p...Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.展开更多
The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted...The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted hydroxypropyl cellulose (H-HPC) and printing thickener earboxymethyl cellulose (CMC). The effects of each ingredient in the paste on color yield of the prints and dye penetration were investigated. The major results indicate that, color yield is chiefly governed by the adhesion extent imparted by H-HPC, the type of fixing alkaline agent, and the content of urea. Trichloroacetic acid (TCAA) as the fixing alkaline agent and adding 5% urea can enhance the color depth obviously. Dye penetration depends on the coating quantity on the transfer paper, the contents of urea and dicyandiamide. The printed silk possesses a higher color yield, color fastness of grade 3 or above, clear sharpness, and good handle when the paste contains 3 % H-HPC, 0. 7 % CMC, 3 % TCAA, 5 % urea, 3 % dicyandiamide, and 0. 5 % physical sorbent nano-silica.展开更多
Objective To evaluate CC2 (N, N’-dichloro-bis [2, 4, 6-trichlorophenyl] urea) invarious hydrophilic and lipophilic formulations as a personnel decontaminant for sulphurmustard (SM). Methods Twenty percent of CC...Objective To evaluate CC2 (N, N’-dichloro-bis [2, 4, 6-trichlorophenyl] urea) invarious hydrophilic and lipophilic formulations as a personnel decontaminant for sulphurmustard (SM). Methods Twenty percent of CC2 was prepared as a suspension or ointmentwith various chemical agents and its stability was evaluated by active chlorine assay. Theefficacy was evaluated in mice by recording the mortality after applying 29 LD50 of SM (LD50 =8.1 mg/kg dermally) and decontaminating it after 2 min with 200 mg of the formulation.Studies were also carried out with 10% and 20% CC2 in acacia and hydroxypropyl cellulose,and the suspensions were stored in polyethylene containers. The stability of the suspensionswas evaluated by active chlorine assay. The efficacy was evaluated by recording themortality after applying 29 LD50 of SM in mice and 12 LD50 of SM in rats (LD50 = 2.4 mg/kgdermally), and decontaminating it with the formulations. LD50 by different routes andprimary skin irritation test of CC2 were also carried out. Results CC2 reacted with peanutoil and neem oil, and was unstable in povidone iodine and Fuller’s earth. Good stability wasachieved with petroleum jelly, honey, polyvinyl pyrrolidone, calamine lotion, acacia andhydroxypropyl cellulose. Though CC2 was stable in lipophilic formulations, it did notprotect the animals. The hydrophilic formulations particularly acacia and hydroxypropylcellulose gave very good protection and was stable in the polyethylene containers for aperiod of 1 year. The efficacy of 20% CC2 was better than 10% CC2. The oral and dermalLD50 of CC2 was found to be above 5.0 g/kg. CC2 was also found to be nonirritant.Conclusion Twenty percent of CC2 in hydroxypropyl cellulose is better with respect tostability, efficacy and ease of decontamination. CC2 is also a safe chemical.展开更多
文摘Hydroxypropyl celluloses(HPC) were homogenously synthesized by the reaction of cellulose with propylene oxide in NaOH/urea aqueous solution.Water-soluble HPC with molar degree of substitution(MSNMR) in the range of 0.52~0.78 was prepared from microcrystalline cellulose,cotton linters,and spruce sulfite pulp.The structure of the HPC samples was characterized by means of FT-IR,NMR,gas chromatography(GC),and size exclusion chromatography(SEC) analyses.Three types of cellulose samples with different molecular weights were found to dissolve well in the NaOH/urea solvent with no obvious differences in reactivity and regioselectivity.The relative reactivity of hydroxyl groups in the glycosyl unit was in the following order:O-6>O-2>O-3.In addition,the results of the study indicated that the tandem reaction during hydroxypropylation could be ignored.
基金the National Natural Science Foundation of China(Nos.21574007 and 51521062)the Fundamental Research Funds for the Central Universities(Nos.XK1802-2 and XK1802-1).
文摘The novel amphiphilic graft copolymers with hydrophilic hard polar hydroxypropyl cellulose(HPC)backbone and hydrophobic soft nonpolar polyisobutylene(PIB)branches have been successfully synthesized through nucleophilic substitution reaction of living PIB chains carrying oxonium ions with the-OH groups along HPC backbone.The PIB branch length in the graft copolymers could be designed by living cationic polymerization and the grafting density could be adjusted by PIB+/-OH molar ratio.The living PIB chains carrying oxonium ion were prepared by transformation of allyl bromide end groups in the presence of AgCI0_(4) and silver nanoparticles(3.2±0.3 nm,0.7 wt%-1.8 wt%)generated in situ from AgBr.The phase-separation morphology was formed in the graft copolymers due to their incompatibility between backbone and branches.The hydrophilicity on the surface of graft copolymer films could be turned to hydrophobicity by increasing grafting density or/and length of PIB branches.The soft PIB segments in graft copolymers provided an unique surface wa self-assembly for ant卜protein adsorption against bovine serum albumin.A small amount of Ag nanoparticles in the copolymers contributed to good antibacterial activities against Staphylococcus aureus or Escherichia coli.
基金Funded by the National Natural Science Foundation of China(No.50902107)National Science and Technology Supporting Program (No.2011BAJ04B02)the Fundamental Research Funds for the Central Universities (No.2011-YB-03)
文摘Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FTIR and TG-DTG. The results show that HPMC can significantly delay the hydration induction period and acceleration period of cement pastes. As mixing amount increased, hydration induction period of cement pastes enlarged and accelerated period gradually went back. At the same time, the amount of hydration heat gradually decreased. Expanded perlite had worse delay effects and less change of hydration heat amount of cement pastes than HPMC. HPMC changed the structure of C-S-H during cement hydration. The more amount of HPMC, the more obvious effect. However, EXP had little influence on the structure of C-S-H. At the same age, the content of Ca (OH)2 in cement pastes gradually decreased as the mixing amount increase of HPMC and expanded perlite, and had better delay effect than that single-doped with HPMC or expanded perlite when HPMC and expanded nerlite were both dooed in cement pastes.
基金financially supported by the GuangdongHong Kong joint innovation program(2014B050505019)the National Natural Science Foundation of China(31570569)
文摘Hydroxypropyl methyl cellulose(HPMC)-based hybrid nanocomposites reinforced with bacterial cellulose nanocrystals(BCNC) were prepared and characterized.The HPMC nanocomposites exhibited good thermal stability,with a thermogravimetric peak temperature of around 346℃.The addition of BCNC did not significantly affect the thermal degradation temperature or improve the transparency of HPMC nanocomposites.However,the addition of BCNC favorably affected the light scattering properties of the nanocomposites and enhanced mechanical properties such as tensile stress and Young's modulus from 65 MPa and 1.5 GPa up to 139 MPa and 3.2 GPa,respectively.The oxygen permeability of the HPMC nanocomposites also increased with increase in the amount of BCNC added.
基金Funded by National Natural Science Foundation of China(No.52174206)Shaanxi Provincial Department of Education Youth Innovation Team Construction Scientific Research Plan Project(No.21JP074)Shaanxi Provincial Department of Education Youth Innovation Team Scientific Research Plan Project(No.22JP047)。
文摘Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.
基金Jiangsu Province Project of Postgraduate Innovation Engineering,China(No.CXZZ12_0821)Industry-academic Joint Technological Innovations Fund Project of Jiangsu Province,China(No.BY2012120)Suzhou Project of Scientific and Technical Supporting,China(No.ZXS2012001)
文摘The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted hydroxypropyl cellulose (H-HPC) and printing thickener earboxymethyl cellulose (CMC). The effects of each ingredient in the paste on color yield of the prints and dye penetration were investigated. The major results indicate that, color yield is chiefly governed by the adhesion extent imparted by H-HPC, the type of fixing alkaline agent, and the content of urea. Trichloroacetic acid (TCAA) as the fixing alkaline agent and adding 5% urea can enhance the color depth obviously. Dye penetration depends on the coating quantity on the transfer paper, the contents of urea and dicyandiamide. The printed silk possesses a higher color yield, color fastness of grade 3 or above, clear sharpness, and good handle when the paste contains 3 % H-HPC, 0. 7 % CMC, 3 % TCAA, 5 % urea, 3 % dicyandiamide, and 0. 5 % physical sorbent nano-silica.
文摘Objective To evaluate CC2 (N, N’-dichloro-bis [2, 4, 6-trichlorophenyl] urea) invarious hydrophilic and lipophilic formulations as a personnel decontaminant for sulphurmustard (SM). Methods Twenty percent of CC2 was prepared as a suspension or ointmentwith various chemical agents and its stability was evaluated by active chlorine assay. Theefficacy was evaluated in mice by recording the mortality after applying 29 LD50 of SM (LD50 =8.1 mg/kg dermally) and decontaminating it after 2 min with 200 mg of the formulation.Studies were also carried out with 10% and 20% CC2 in acacia and hydroxypropyl cellulose,and the suspensions were stored in polyethylene containers. The stability of the suspensionswas evaluated by active chlorine assay. The efficacy was evaluated by recording themortality after applying 29 LD50 of SM in mice and 12 LD50 of SM in rats (LD50 = 2.4 mg/kgdermally), and decontaminating it with the formulations. LD50 by different routes andprimary skin irritation test of CC2 were also carried out. Results CC2 reacted with peanutoil and neem oil, and was unstable in povidone iodine and Fuller’s earth. Good stability wasachieved with petroleum jelly, honey, polyvinyl pyrrolidone, calamine lotion, acacia andhydroxypropyl cellulose. Though CC2 was stable in lipophilic formulations, it did notprotect the animals. The hydrophilic formulations particularly acacia and hydroxypropylcellulose gave very good protection and was stable in the polyethylene containers for aperiod of 1 year. The efficacy of 20% CC2 was better than 10% CC2. The oral and dermalLD50 of CC2 was found to be above 5.0 g/kg. CC2 was also found to be nonirritant.Conclusion Twenty percent of CC2 in hydroxypropyl cellulose is better with respect tostability, efficacy and ease of decontamination. CC2 is also a safe chemical.