Creating sustainable cities is the only way to live in a clean environment,and this problem can be solved by using bio-sourced and recycled materials.For this purpose,the authors contribute to the valuation of sheep w...Creating sustainable cities is the only way to live in a clean environment,and this problem can be solved by using bio-sourced and recycled materials.For this purpose,the authors contribute to the valuation of sheep wool waste as an eco-friendly material to be used in insulation.The paper investigates the thermal,hygrothermal,and biological aspects of sheep wool by testing a traditional treatment.The biological method of aerobic mesophilicflora has been applied.Fluorescence X was used to determine the chemical composition of the materials used.Also,thermal characterization has been conducted.The thermal conductivity is above 0.046(W·m^(-1)·K^(-1))and the thermal diffusivity is 1.56.10^(-6) m^(2)·s^(-1).Besides,the energy efficiency of using sheep wool in buildings was studied.Furthermore,its humidity behavior was evaluated in different aspects in both winter and summer.Results of biological analyses show the efficiency of the treatment by removing the majority of the microorgan-isms:the value of yeast and mildew was reduced from 38.10^(2) to 2.10^(2)(UFC·g^(-1)).In addition to that,sheep wool permits obtaining a low thermal transmittance on the scale of the walls and low cooling needs on the scale of the building with a gain of 45%and 52%,respectively.展开更多
This study presents the thermal comfort and hygrothermal performance of building envelope of the first certified passive single-family detached house in Estonia.Temperature and humidity conditions were measured from d...This study presents the thermal comfort and hygrothermal performance of building envelope of the first certified passive single-family detached house in Estonia.Temperature and humidity conditions were measured from different rooms and building envelopes.This article presents analysis of measurement results during the first year after construction.Results showed high room temperature,achieved mainly due to large windows with southern exposure and the small heat loss of the building envelope.High indoor temperature decreased the indoor RH(relative humidity)to quite low levels.Even the RH was low,the moisture excess was high indicating that the design of PH(passive houses)indoor humidity loads cannot be decreased.Humidity in the externally insulated cross-laminated timber panels was observed to be high,caused by drying out of the constructional moisture and the high diffusion resistance of the wood fibre sheathing board.That caused water vapour condensation and risk for mould growth.In conclusion,while planning buildings with high-energy efficiency,more focused attention should be paid to the performance of the building service systems and moisture safety already in the preliminary stages of design.展开更多
The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The m...The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.展开更多
The aging behavior of single lap joints(SLJ) in hygrothermal cycles was investigated and compared by using a shearing strength test, Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG/DTG), e...The aging behavior of single lap joints(SLJ) in hygrothermal cycles was investigated and compared by using a shearing strength test, Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG/DTG), energy dispersive spectrometry(EDS) and scanning electronic microscopy(SEM). The temperature/relative humidity was set at 80 ℃/95% and –40 ℃/30% for 20 cycles, 40 cycles, and 60 cycles(one cycle was 12 hours), respectively. The experimental results show that hygrothermal aging significantly decreases the failure strength of adhesive joints. However, the failure displacement increases as the number of aging cycles increases. In addition, hygrothermal aging changes the failure mode of the adhesive joints from a cohesive fracture in un-aged adhesive layers to an interfacial failure of aged adhesive joints.展开更多
We developed a novel rapid hygrothermal pasteurization (RHP) method using saturated water vapor with a dew point of 100℃. The aim of this paper is to compare the effect of RHP treatment versus conventional sodium hyp...We developed a novel rapid hygrothermal pasteurization (RHP) method using saturated water vapor with a dew point of 100℃. The aim of this paper is to compare the effect of RHP treatment versus conventional sodium hypochlorite (NaClO) treatments on inactivation of natural mesophilic bacteria and quality attributes on fruits and vegetables. The RHP treatment was performed within a second by free-falling samples (cabbage, cucumber, carrot, bell pepper, pineapple and melon) through cylindrical processing chamber filled with steam. NaClO treatment was performed by washing samples with NaClO solution (100 mg/mL of free chlorine (pH 7), for 1 min). The RHP treatment showed a significantly higher inactivation effect than NaClO treatment on all tested samples. The RHP treatment had a slightly larger influence on color and vitamin C content than NaClO treatment in cabbage. Furthermore, the effects of treatment time and operated temperature were also determined using microbial model system. Elongation of treatment time did not significantly increase the microbial inactivation effect. Lowering of operated temperature by mixing air into steam tended to decrease the inactivation effect. From these results, RHP treatment could be used as an alternative method for decontaminating microorganisms on fruits and vegetables, except on leafy vegetable. In addition, it is suggested that microbial inactivation by RHP treatment was achieved through the initial condensation stage of water vapor on sample surface. By contrast, interfusion of air disturbed the effective condensation of water vapor.展开更多
In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value ...In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value of J is unequal to the energy release rate in hygrothermal coupling cases. In the present paper, we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas. By introducing the constitutive relations and the essential equations of irreversible thermodynamics, a specific expression of the energy release rate was obtained, and the expression can be reformmulated as path independent integrals, which is equivalent to the energy release rate of the fracture body. The path independence of the integrals is then verified numerically.展开更多
The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few stu...The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.展开更多
A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numeric...A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numerically by implementing the finite-difference scheme.To evaluate the accuracy of the model,a test system was built up to measure relative humidity and temperature within a porous wall and compare with the prediction of the model.The prediction results have good agreement with the experimental results.For the interface close to indoor side,the maximum deviation of temperature between calculated and test data is 1.87 K,and the average deviation is 0.95 K;the maximum deviation of relative humidity is 11.4%,and the average deviation is 5.7%.For the interface close to outdoor side,the maximum deviation of temperature between prediction and measurement is 1.78 K,and the average deviation is 1.1 K;the maximum deviation of relative humidity is 9.9%,and the average deviation is 4.2%.展开更多
Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment s...Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.展开更多
Quasi-static and high strain rate compressive behaviors and failure mechanisms of hygrothermal treated ultra-high molecular weight polyethylene/polyurethane(UHMWPE/PU)composites have been studied in this paper.Firstly...Quasi-static and high strain rate compressive behaviors and failure mechanisms of hygrothermal treated ultra-high molecular weight polyethylene/polyurethane(UHMWPE/PU)composites have been studied in this paper.Firstly,the UHMWPE composites were immersed in water at 70℃.The out-ofplane compression test was then performed on the dry/wet state specimens at quasi-static states(0.001-0.01 s^(-1))and high strain rate states(800-2 400 s^(-1)).The split Hopkinson pressure bar(SHPB)was adopted in the dynamic tests and waveform shapers were used to smooth and control the incident pulse.The results show that there are two platforms for the water absorption curve of UHMWPE composites.The absorption of moisture reduces the quasi-static compressive strength of the material while initially increasing,then decreasing the dynamic compressive strength.Matrix plasticization,fiber/matrix interface degradation and void expansion are the main factors affecting the irregular change of static/dynamic compressive strength of UHMWPE composites.展开更多
The woven glass fiber reinforced composites(GFRP)subjected to high-speed impact is investigated to identify the hygrothermal aging effect on the impact resistance.Both the hygrothermal aged and unaged glass/epoxy lami...The woven glass fiber reinforced composites(GFRP)subjected to high-speed impact is investigated to identify the hygrothermal aging effect on the impact resistance.Both the hygrothermal aged and unaged glass/epoxy laminates are subjected to different impact velocities,which is confirmed as a sensitive factor for the failure modes and mechanisms.The results show the hygrothermal aging effect decreases the ballistic limit by 14.9%,but the influence on ballistic performance is limited within the impact velocity closed to the ballistic limit.The failure modes and energy dissipation mechanisms are confirmed to be slightly influenced by the hygrothermal aging effect.The hygrothermal aging effect induced localization of structural deformation and degradation of mechanical properties are the main reasons for the composite undergoing the same failure modes at smaller impact velocities.Based on the energy absorption mechanisms,analytical expressions predict the ballistic limit and energy absorption to reasonable accuracy,the underestimated total energy absorption results in a relatively poor agreement between the measured and predicted energy absorption efficiency.展开更多
Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Tw...Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Two different natural fibers,hemp fiber and cotton fiber,were reinforced to earthen plasters in the same percentage to evaluate the influence on hygrothermal performance.The two types of earthen plasters were studied:one containing hemp fiber in the fine plaster(HFP)and the other containing cotton fiber in the fine plaster(CFP).Specific heat capacity,dry thermal conductivity,water vapor permeability,and sorption isotherms were investigated.The results showed that the difference between two natural fibers has much more impact on the hygric properties(water vapor permeability and sorption isotherms)of earthen plasters than on their thermal performance(specific heat capacity and dry thermal conductivity).The CFP with higher density has higher thermal conductivity than the HFP with lower density.But no significant differences of specific heat capacity were observed.Compared with HFP,CFP used in murals can reduce the rate of water transfer and prevent salt from transferring water to the mural surface.The overall findings highlight that all these features of CFP are beneficial to the long-term preservation of murals.The study of the earthen plasters in Mogao Grottoes is of general significance,and the measured properties can be used to obtain coupled heat and moisture analysis of the earthen plasters and to dissect the degradation mechanism of murals.展开更多
Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most o...Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most of these studies focused on thermal properties while neglecting hygroscopic aspects.In this study,the two materials have been combined into a building envelope and the related hygrothermal properties have been studied.In particular,numerical studies have been performed to investigate the temperature and relative humidity behavior inside the HC,and the effect of adding PCM on the hygrothermal behavior of the HC.The results show that there is a high coupling between temperature and relative humidity inside the HC,since the relative humidity changes on the second and third days are different,with values of 8%and 4%,respectively.Also,the variation of relative humidity with temperature indicates the dominant influence of temperature on relative humidity variation.With the presence of PCM,the temperature variation inside the HC is damped due to the high thermal inertia of the PCM,which also leads to suppression of moisture evaporation and thus damping of relative humidity variation.On the second and third days,the temperature changes at the central position are reduced by 4.6%and 5.1%,compared to the quarter position.For the relative humidity change,the reductions are 5.3%and 5.4%on the second and third days,respectively.Therefore,PCM,with high thermal inertia,acts as a temperature damper and has the potential to increase the moisture buffering capacity inside the HC.This makes it possible for such a combined envelope to have both thermal and hygric inertia.展开更多
文摘Creating sustainable cities is the only way to live in a clean environment,and this problem can be solved by using bio-sourced and recycled materials.For this purpose,the authors contribute to the valuation of sheep wool waste as an eco-friendly material to be used in insulation.The paper investigates the thermal,hygrothermal,and biological aspects of sheep wool by testing a traditional treatment.The biological method of aerobic mesophilicflora has been applied.Fluorescence X was used to determine the chemical composition of the materials used.Also,thermal characterization has been conducted.The thermal conductivity is above 0.046(W·m^(-1)·K^(-1))and the thermal diffusivity is 1.56.10^(-6) m^(2)·s^(-1).Besides,the energy efficiency of using sheep wool in buildings was studied.Furthermore,its humidity behavior was evaluated in different aspects in both winter and summer.Results of biological analyses show the efficiency of the treatment by removing the majority of the microorgan-isms:the value of yeast and mildew was reduced from 38.10^(2) to 2.10^(2)(UFC·g^(-1)).In addition to that,sheep wool permits obtaining a low thermal transmittance on the scale of the walls and low cooling needs on the scale of the building with a gain of 45%and 52%,respectively.
基金supported by the European Union through the European Regional Development Fundthe“Reducing the Environmental Impact of Buildings through Improvements of Energy Performance,AR12059”(financed by SA Archimedes)IUT1-15 project“Nearly-Zero Energy Solutions and Their Implementation on Deep Renovation of Buildings”(financed by the Estonian Research Council).
文摘This study presents the thermal comfort and hygrothermal performance of building envelope of the first certified passive single-family detached house in Estonia.Temperature and humidity conditions were measured from different rooms and building envelopes.This article presents analysis of measurement results during the first year after construction.Results showed high room temperature,achieved mainly due to large windows with southern exposure and the small heat loss of the building envelope.High indoor temperature decreased the indoor RH(relative humidity)to quite low levels.Even the RH was low,the moisture excess was high indicating that the design of PH(passive houses)indoor humidity loads cannot be decreased.Humidity in the externally insulated cross-laminated timber panels was observed to be high,caused by drying out of the constructional moisture and the high diffusion resistance of the wood fibre sheathing board.That caused water vapour condensation and risk for mould growth.In conclusion,while planning buildings with high-energy efficiency,more focused attention should be paid to the performance of the building service systems and moisture safety already in the preliminary stages of design.
文摘The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.
基金Funded by the National Natural Science Foundation of China(51775230)the Graduate Innovation Fund of Jilin University(2017013)
文摘The aging behavior of single lap joints(SLJ) in hygrothermal cycles was investigated and compared by using a shearing strength test, Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG/DTG), energy dispersive spectrometry(EDS) and scanning electronic microscopy(SEM). The temperature/relative humidity was set at 80 ℃/95% and –40 ℃/30% for 20 cycles, 40 cycles, and 60 cycles(one cycle was 12 hours), respectively. The experimental results show that hygrothermal aging significantly decreases the failure strength of adhesive joints. However, the failure displacement increases as the number of aging cycles increases. In addition, hygrothermal aging changes the failure mode of the adhesive joints from a cohesive fracture in un-aged adhesive layers to an interfacial failure of aged adhesive joints.
文摘We developed a novel rapid hygrothermal pasteurization (RHP) method using saturated water vapor with a dew point of 100℃. The aim of this paper is to compare the effect of RHP treatment versus conventional sodium hypochlorite (NaClO) treatments on inactivation of natural mesophilic bacteria and quality attributes on fruits and vegetables. The RHP treatment was performed within a second by free-falling samples (cabbage, cucumber, carrot, bell pepper, pineapple and melon) through cylindrical processing chamber filled with steam. NaClO treatment was performed by washing samples with NaClO solution (100 mg/mL of free chlorine (pH 7), for 1 min). The RHP treatment showed a significantly higher inactivation effect than NaClO treatment on all tested samples. The RHP treatment had a slightly larger influence on color and vitamin C content than NaClO treatment in cabbage. Furthermore, the effects of treatment time and operated temperature were also determined using microbial model system. Elongation of treatment time did not significantly increase the microbial inactivation effect. Lowering of operated temperature by mixing air into steam tended to decrease the inactivation effect. From these results, RHP treatment could be used as an alternative method for decontaminating microorganisms on fruits and vegetables, except on leafy vegetable. In addition, it is suggested that microbial inactivation by RHP treatment was achieved through the initial condensation stage of water vapor on sample surface. By contrast, interfusion of air disturbed the effective condensation of water vapor.
基金The project supported by the Key Project of Chinese Ministry of Education (03145)the Science Fund of Southwest Jiaotong University
文摘In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value of J is unequal to the energy release rate in hygrothermal coupling cases. In the present paper, we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas. By introducing the constitutive relations and the essential equations of irreversible thermodynamics, a specific expression of the energy release rate was obtained, and the expression can be reformmulated as path independent integrals, which is equivalent to the energy release rate of the fracture body. The path independence of the integrals is then verified numerically.
基金supported by the National Science Foundation of China(11772028,11872131,11702012,U1864208,11572058 and 11372020)the Academic Excellence Foundation of BUAA for PhD Students.
文摘The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.
基金Project(51078127) supported by the National Natural Science Foundation of ChinaProject(JJ201109091631) supported by the Foundation for Young Scientists of Jiangxi Education Department, China
文摘A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numerically by implementing the finite-difference scheme.To evaluate the accuracy of the model,a test system was built up to measure relative humidity and temperature within a porous wall and compare with the prediction of the model.The prediction results have good agreement with the experimental results.For the interface close to indoor side,the maximum deviation of temperature between calculated and test data is 1.87 K,and the average deviation is 0.95 K;the maximum deviation of relative humidity is 11.4%,and the average deviation is 5.7%.For the interface close to outdoor side,the maximum deviation of temperature between prediction and measurement is 1.78 K,and the average deviation is 1.1 K;the maximum deviation of relative humidity is 9.9%,and the average deviation is 4.2%.
基金supported by the Ministry of Science and Technology of China(2006BAJ04A01 and 2006BAJ03A04-01)
文摘Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.
基金Supported by the Ministerial Level Advanced Research Foundation(2030301020502)
文摘Quasi-static and high strain rate compressive behaviors and failure mechanisms of hygrothermal treated ultra-high molecular weight polyethylene/polyurethane(UHMWPE/PU)composites have been studied in this paper.Firstly,the UHMWPE composites were immersed in water at 70℃.The out-ofplane compression test was then performed on the dry/wet state specimens at quasi-static states(0.001-0.01 s^(-1))and high strain rate states(800-2 400 s^(-1)).The split Hopkinson pressure bar(SHPB)was adopted in the dynamic tests and waveform shapers were used to smooth and control the incident pulse.The results show that there are two platforms for the water absorption curve of UHMWPE composites.The absorption of moisture reduces the quasi-static compressive strength of the material while initially increasing,then decreasing the dynamic compressive strength.Matrix plasticization,fiber/matrix interface degradation and void expansion are the main factors affecting the irregular change of static/dynamic compressive strength of UHMWPE composites.
基金supported by the Ph.D.Research Startup Funding of Eastern Liaoning University(Grant no.2019BS009).
文摘The woven glass fiber reinforced composites(GFRP)subjected to high-speed impact is investigated to identify the hygrothermal aging effect on the impact resistance.Both the hygrothermal aged and unaged glass/epoxy laminates are subjected to different impact velocities,which is confirmed as a sensitive factor for the failure modes and mechanisms.The results show the hygrothermal aging effect decreases the ballistic limit by 14.9%,but the influence on ballistic performance is limited within the impact velocity closed to the ballistic limit.The failure modes and energy dissipation mechanisms are confirmed to be slightly influenced by the hygrothermal aging effect.The hygrothermal aging effect induced localization of structural deformation and degradation of mechanical properties are the main reasons for the composite undergoing the same failure modes at smaller impact velocities.Based on the energy absorption mechanisms,analytical expressions predict the ballistic limit and energy absorption to reasonable accuracy,the underestimated total energy absorption results in a relatively poor agreement between the measured and predicted energy absorption efficiency.
基金This project was supported by the National Natural Science Foundation of China(Projects No.51378412)China State Administration of Cultural Heritage(Project No.20110308).
文摘Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Two different natural fibers,hemp fiber and cotton fiber,were reinforced to earthen plasters in the same percentage to evaluate the influence on hygrothermal performance.The two types of earthen plasters were studied:one containing hemp fiber in the fine plaster(HFP)and the other containing cotton fiber in the fine plaster(CFP).Specific heat capacity,dry thermal conductivity,water vapor permeability,and sorption isotherms were investigated.The results showed that the difference between two natural fibers has much more impact on the hygric properties(water vapor permeability and sorption isotherms)of earthen plasters than on their thermal performance(specific heat capacity and dry thermal conductivity).The CFP with higher density has higher thermal conductivity than the HFP with lower density.But no significant differences of specific heat capacity were observed.Compared with HFP,CFP used in murals can reduce the rate of water transfer and prevent salt from transferring water to the mural surface.The overall findings highlight that all these features of CFP are beneficial to the long-term preservation of murals.The study of the earthen plasters in Mogao Grottoes is of general significance,and the measured properties can be used to obtain coupled heat and moisture analysis of the earthen plasters and to dissect the degradation mechanism of murals.
基金We thank to the China Scholarship Council(CSC)for its financial support to the first author,No.201808120084.
文摘Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most of these studies focused on thermal properties while neglecting hygroscopic aspects.In this study,the two materials have been combined into a building envelope and the related hygrothermal properties have been studied.In particular,numerical studies have been performed to investigate the temperature and relative humidity behavior inside the HC,and the effect of adding PCM on the hygrothermal behavior of the HC.The results show that there is a high coupling between temperature and relative humidity inside the HC,since the relative humidity changes on the second and third days are different,with values of 8%and 4%,respectively.Also,the variation of relative humidity with temperature indicates the dominant influence of temperature on relative humidity variation.With the presence of PCM,the temperature variation inside the HC is damped due to the high thermal inertia of the PCM,which also leads to suppression of moisture evaporation and thus damping of relative humidity variation.On the second and third days,the temperature changes at the central position are reduced by 4.6%and 5.1%,compared to the quarter position.For the relative humidity change,the reductions are 5.3%and 5.4%on the second and third days,respectively.Therefore,PCM,with high thermal inertia,acts as a temperature damper and has the potential to increase the moisture buffering capacity inside the HC.This makes it possible for such a combined envelope to have both thermal and hygric inertia.