A set of 16 microsatellite loci was developed and characterized for the Xantus’ hummingbird (Hylocharis xantusii) by using 454 next-generation sequencing. Twenty-five H. xantusii samples from one population were geno...A set of 16 microsatellite loci was developed and characterized for the Xantus’ hummingbird (Hylocharis xantusii) by using 454 next-generation sequencing. Twenty-five H. xantusii samples from one population were genotyped;all loci were polymorphic, with the number of alleles ranging from three to ten. The mean observed heterozygosity was 0.681 for all loci. No significant linkage disequilibrium was detected, but five loci (Hxan05, 06, 09, 13 and 14) showed deviation from Hardy-Weinberg equilibrium. These microsatellite loci are the first to be characterized for H. xantusii. A moderate to high level of cross-species amplification was observed across the six hummingbird species (31% - 87.5%), with the best cross amplification results observed in the closest related species (H. leucotis, Cynanthus latirostris, Calypte costae). The availability of these molecular tools allows assessing questions integrating population genetics, ecology, conservation, and evolutionary history for H. xantusii and for other phyogenetically related species.展开更多
文摘A set of 16 microsatellite loci was developed and characterized for the Xantus’ hummingbird (Hylocharis xantusii) by using 454 next-generation sequencing. Twenty-five H. xantusii samples from one population were genotyped;all loci were polymorphic, with the number of alleles ranging from three to ten. The mean observed heterozygosity was 0.681 for all loci. No significant linkage disequilibrium was detected, but five loci (Hxan05, 06, 09, 13 and 14) showed deviation from Hardy-Weinberg equilibrium. These microsatellite loci are the first to be characterized for H. xantusii. A moderate to high level of cross-species amplification was observed across the six hummingbird species (31% - 87.5%), with the best cross amplification results observed in the closest related species (H. leucotis, Cynanthus latirostris, Calypte costae). The availability of these molecular tools allows assessing questions integrating population genetics, ecology, conservation, and evolutionary history for H. xantusii and for other phyogenetically related species.