Kernel adaptive filters(KAFs)have sparked substantial attraction for online non-linear learning applications.It is noted that the effectiveness of KAFs is highly reliant on a rational learning criterion.Concerning thi...Kernel adaptive filters(KAFs)have sparked substantial attraction for online non-linear learning applications.It is noted that the effectiveness of KAFs is highly reliant on a rational learning criterion.Concerning this,the logarithmic hyperbolic cosine(lncosh)criterion with better robustness and convergence has drawn attention in recent studies.However,existing lncosh loss-based KAFs use the stochastic gradient descent(SGD)for optimization,which lack a trade-off between the convergence speed and accuracy.But recursion-based KAFs can provide more effective filtering performance.Therefore,a Nyström method-based robust sparse kernel recursive least lncosh loss algorithm is derived in this article.Experiments via measures and synthetic data against the non-Gaussian noise confirm the superiority with regard to the robustness,accuracy performance,and computational cost.展开更多
A bilogarithmic hyperbolic cosine method for the evaluation of overlapping formation constants at varying (or fixed) ionic strength is devised in this paper and applied to data reported in the analytical literature, i...A bilogarithmic hyperbolic cosine method for the evaluation of overlapping formation constants at varying (or fixed) ionic strength is devised in this paper and applied to data reported in the analytical literature, i.e. succinic acid system, Cu(II)-glycine system and Ag(I)-aminobutan-1-ol system. The method is based on the linearization of the formation function ? = f(pH) or ? = f(pL) data. A theoretical slope of unity should be obtained thus proving the correctness of the assumed equilibria. An additional advantage of the bilogarithmic method proposed is that it provides a closed scale representation of Y and X unlike other plots. This paper forms part of an investigation into the uses of bilogarithmic methods and hyperbolic functions in parameter estimation. Methods based on the application of spectrophotometric measurements have been the subject of recent studies.展开更多
To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or ...To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or tension,span length,temperature change,elastic deformation,and the Earth’s rotation)of the vertical sag are summarized,and their validity is verified through actual measurements.Finally,the essential factors affecting vertical sag,i.e.,the specific strength and length,are discussed.It is believed that the vertical sag of a stretched wire is proportional to the square of the length and inversely proportional to the specific strength of the material.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants No.62027803,No.61601096,No.61971111,and No.61801089in part by the Science and Technology Program under Grants No.8091C24,No.2021JCJQJJ0949,and No.2022JCJQJJ0784in part by the Industrial Technology Development Program under Grant No.2020110C041.
文摘Kernel adaptive filters(KAFs)have sparked substantial attraction for online non-linear learning applications.It is noted that the effectiveness of KAFs is highly reliant on a rational learning criterion.Concerning this,the logarithmic hyperbolic cosine(lncosh)criterion with better robustness and convergence has drawn attention in recent studies.However,existing lncosh loss-based KAFs use the stochastic gradient descent(SGD)for optimization,which lack a trade-off between the convergence speed and accuracy.But recursion-based KAFs can provide more effective filtering performance.Therefore,a Nyström method-based robust sparse kernel recursive least lncosh loss algorithm is derived in this article.Experiments via measures and synthetic data against the non-Gaussian noise confirm the superiority with regard to the robustness,accuracy performance,and computational cost.
文摘A bilogarithmic hyperbolic cosine method for the evaluation of overlapping formation constants at varying (or fixed) ionic strength is devised in this paper and applied to data reported in the analytical literature, i.e. succinic acid system, Cu(II)-glycine system and Ag(I)-aminobutan-1-ol system. The method is based on the linearization of the formation function ? = f(pH) or ? = f(pL) data. A theoretical slope of unity should be obtained thus proving the correctness of the assumed equilibria. An additional advantage of the bilogarithmic method proposed is that it provides a closed scale representation of Y and X unlike other plots. This paper forms part of an investigation into the uses of bilogarithmic methods and hyperbolic functions in parameter estimation. Methods based on the application of spectrophotometric measurements have been the subject of recent studies.
基金Large Research Infrastructures“China initiative Accelerator Driven System”(No.2017-000052-75-01-000590).
文摘To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or tension,span length,temperature change,elastic deformation,and the Earth’s rotation)of the vertical sag are summarized,and their validity is verified through actual measurements.Finally,the essential factors affecting vertical sag,i.e.,the specific strength and length,are discussed.It is believed that the vertical sag of a stretched wire is proportional to the square of the length and inversely proportional to the specific strength of the material.