In this paper,we introduce for the first time a new eligible kernel function with a hyperbolic barrier term for semidefinite programming(SDP).This add a new type of functions to the class of eligible kernel functions....In this paper,we introduce for the first time a new eligible kernel function with a hyperbolic barrier term for semidefinite programming(SDP).This add a new type of functions to the class of eligible kernel functions.We prove that the interior-point algorithm based on the new kernel function meets O(n3/4 logε/n)iterations as the worst case complexity bound for the large-update method.This coincides with the complexity bound obtained by the first kernel function with a trigonometric barrier term proposed by El Ghami et al.in2012,and improves with a factor n(1/4)the obtained iteration bound based on the classic kernel function.We present some numerical simulations which show the effectiveness of the algorithm developed in this paper.展开更多
文摘In this paper,we introduce for the first time a new eligible kernel function with a hyperbolic barrier term for semidefinite programming(SDP).This add a new type of functions to the class of eligible kernel functions.We prove that the interior-point algorithm based on the new kernel function meets O(n3/4 logε/n)iterations as the worst case complexity bound for the large-update method.This coincides with the complexity bound obtained by the first kernel function with a trigonometric barrier term proposed by El Ghami et al.in2012,and improves with a factor n(1/4)the obtained iteration bound based on the classic kernel function.We present some numerical simulations which show the effectiveness of the algorithm developed in this paper.