期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Iterative algorithm for parabolic and hyperbolic PDEs with nonlocal boundary conditions
1
作者 N.A.Al-Zaid H.O.Bakodah 《Journal of Ocean Engineering and Science》 SCIE 2018年第4期316-324,共9页
In this paper,we are concerned with the numerical solutions for the parabolic and hyperbolic partial differential equations with nonlocal boundary conditions.Thus,we presented a new iterative algorithm based on the Re... In this paper,we are concerned with the numerical solutions for the parabolic and hyperbolic partial differential equations with nonlocal boundary conditions.Thus,we presented a new iterative algorithm based on the Restarted Adomian Decomposition Method(RADM)for solving the two equations of different types involving dissimilar boundary and nonlocal conditions.The algorithm presented transforms the given nonlocal initial boundary value problem to a local Dirichlet one and then employs the RADM for the numerical treatment.Numerical comparisons were made between our proposed method and the Adomian Decomposition Method(ADM)to demonstrate the efficiency and performance of the proposed method. 展开更多
关键词 Adomian Decomposition Method Restarted method Parabolic and hyperbolic pdes Nonlocal boundary conditions.
原文传递
Efficient Sparse-Grid Implementation of a Fifth-Order Multi-resolution WENO Scheme for Hyperbolic Equations
2
作者 Ernie Tsybulnik Xiaozhi Zhu Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1339-1364,共26页
High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of th... High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of the WENO algorithm,large amount of computational costs are required for solving multidimensional problems.In our previous work(Lu et al.in Pure Appl Math Q 14:57–86,2018;Zhu and Zhang in J Sci Comput 87:44,2021),sparse-grid techniques were applied to the classical finite difference WENO schemes in solving multidimensional hyperbolic equations,and it was shown that significant CPU times were saved,while both accuracy and stability of the classical WENO schemes were maintained for computations on sparse grids.In this technical note,we apply the approach to recently developed finite difference multi-resolution WENO scheme specifically the fifth-order scheme,which has very interesting properties such as its simplicity in linear weights’construction over a classical WENO scheme.Numerical experiments on solving high dimensional hyperbolic equations including Vlasov based kinetic problems are performed to demonstrate that the sparse-grid computations achieve large savings of CPU times,and at the same time preserve comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 Weighted essentially non-oscillatory(WENO)schemes Multi-resolution WENO schemes Sparse grids High spatial dimensions hyperbolic partial differential equations(pdes)
下载PDF
Finite-time consensus of multi-agent systems driven by hyperbolic partial differential equations via boundary control 被引量:1
3
作者 Xuhui WANG Nanjing HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第12期1799-1816,共18页
The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the un... The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods. 展开更多
关键词 finite-time consensus hyperbolic partial differential equation(pde) leaderless multi-agent system(MAS) leader-following MAS boundary control
下载PDF
A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws
4
作者 Raphael Loubere Michael Dumbser Steven Diot 《Communications in Computational Physics》 SCIE 2014年第8期718-763,共46页
In this paper,we investigate the coupling of the Multi-dimensional Optimal Order Detection(MOOD)method and the Arbitrary high order DERivatives(ADER)approach in order to design a new high order accurate,robust and com... In this paper,we investigate the coupling of the Multi-dimensional Optimal Order Detection(MOOD)method and the Arbitrary high order DERivatives(ADER)approach in order to design a new high order accurate,robust and computationally efficient Finite Volume(FV)scheme dedicated to solve nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions,respectively.The Multi-dimensional Optimal Order Detection(MOOD)method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes.It is an arbitrary high-order accurate Finite Volume scheme in space,using polynomial reconstructions with a posteriori detection and polynomial degree decrementing processes to deal with shock waves and other discontinuities.In the following work,the time discretization is performed with an elegant and efficient one-step ADER procedure.Doing so,we retain the good properties of the MOOD scheme,that is to say the optimal high-order of accuracy is reached on smooth solutions,while spurious oscillations near singularities are prevented.The ADER technique permits not only to reduce the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D,but it also increases the stability of the overall scheme.A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost,robustness,accuracy and efficiency.The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive(memory and/or CPU time),or because it is more accurate for a given grid resolution.A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws:the Euler equations of compressible gas dynamics,the classical equations of ideal magneto-Hydrodynamics(MHD)and finally the relativistic MHD equations(RMHD),which constitutes a particularly challenging nonlinear system of hyperbolic partial differential equation.All tests are run on genuinely unstructured grids composed of simplex elements. 展开更多
关键词 Finite Volume high-order conservation law polynomial reconstruction ADER MOOD hyperbolic pde unstructured meshes finite volume one-step time discretization local continuous space-time Galerkin method WENO Euler equations MHD equations relativistic MHD equations.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部