期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Spacelike Mobius Hypersurfaces in Four Dimensional Lorentzian Space Form 被引量:5
1
作者 Yan Bin LIN Ying Lü Chang Ping WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第4期519-536,共18页
In this paper, we first set up an alternative fundamental theory of M?bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined... In this paper, we first set up an alternative fundamental theory of M?bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined completely by a system consisting of a function W and a tangent frame {E_i}. Then we give a complete classification for spacelike M?bius homogeneous hypersurfaces in four dimensional Lorentzian space form. They are either M?bius equivalent to spacelike Dupin hypersurfaces or to some cylinders constructed from logarithmic curves and hyperbolic logarithmic spirals. Some of them have parallel para-Blaschke tensors with non-vanishing M?bius form. 展开更多
关键词 Mobius form Mobius metric para-Blaschke tensor Mobius homogeneous hypersurface hyperbolic logarithmic spiral Dupin hypersurface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部