期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Application of a fourth-order relaxation scheme to hyperbolic systems of conservation laws 被引量:7
1
作者 Jianzhong Chen Zhongke Shi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期84-92,共9页
A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CW... A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments. 展开更多
关键词 hyperbolic systems of conservation laws relaxation schemes cweno reconstruction
下载PDF
ON THE CENTRAL RELAXING SCHEME Ⅱ: SYSTEMS OF HYPERBOLIC CONSERVATION LAWS 被引量:2
2
作者 Hua-zhong Tang (School of Mathematical Sciences, Peking University, Beijing 100871, China) (LSEC,ICMSEC Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, China) 《Journal of Computational Mathematics》 SCIE CSCD 2001年第6期571-582,共12页
This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced... This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced to approximate system of conservation laws in curvilinear coordinates. Based on them, the semi-implicit relaxing schemes are con- structed as in [6, 12] without using any linear or nonlinear Riemann solvers. Numerical experiments for one-dimensional and two-dimensional problems are presented to demon- strate the performance and resolution of the current schemes. 展开更多
关键词 hyperbolic conservation laws The relaxing system The central relaxing schemes The Euler equations.
原文传递
基于五阶CWENO重构的中心迎风格式 被引量:1
3
作者 程晓晗 封建湖 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期13-16,共4页
提出一种五阶CWENO重构,将其与中心迎风数值通量相结合,得到一种求解双曲型守恒律方程的五阶中心迎风格式。该格式构造简单,无需Riemann求解器,易于编程实现。运用该格式求解标量守恒律方程和Euler方程组,数值结果表明,该格式具有五阶精... 提出一种五阶CWENO重构,将其与中心迎风数值通量相结合,得到一种求解双曲型守恒律方程的五阶中心迎风格式。该格式构造简单,无需Riemann求解器,易于编程实现。运用该格式求解标量守恒律方程和Euler方程组,数值结果表明,该格式具有五阶精度,分辨率高,能准确计算出解的各种复杂结构。 展开更多
关键词 五阶cweno重构 中心迎风格式 双曲型守恒律
下载PDF
求解一维理想磁流体方程的5阶紧凑CWENO中心迎风格式
4
作者 颜克清 封建湖 魏伟平 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2016年第3期344-346,共3页
通过结合求解双曲型守恒律的5阶紧凑CWENO格式和半离散中心迎风格式,推广应用于求解一维理想磁流体力学方程,得到计算一维理想磁流体力学方程的5阶紧凑CWENO中心迎风格式.
关键词 双曲守恒律 理想磁流体方程 紧凑 cweno 重构 中心迎风格式
下载PDF
AN EFFICIENT THIRD-ORDER SCHEME FOR THREE-DIMENSIONAL HYPERBOLIC CONSERVATION LAWS
5
作者 LI CAI JIAN-HU FENG +1 位作者 YU-FENG NIE WEN-XIAN XIE 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2012年第4期38-57,共20页
In this paper,we present a third-order central weighted essentially nonoscillatory(CWENO)reconstruction for computations of hyperbolic conservation laws in three space dimensions.Simultaneously,as a Godunov-type centr... In this paper,we present a third-order central weighted essentially nonoscillatory(CWENO)reconstruction for computations of hyperbolic conservation laws in three space dimensions.Simultaneously,as a Godunov-type central scheme,the CWENOtype central-upwind scheme,i.e.,the semi-discrete central-upwind scheme based on our third-order CWENO reconstruction,is developed straightforwardly to solve 3D systems by the so-called componentwise and dimensional-by-dimensional technologies.The high resolution,the efficiency and the nonoscillatory property of the scheme can be verified by solving several numerical experiments. 展开更多
关键词 hyperbolic conservation laws cweno reconstruction semi-discrete centralupwind scheme.
原文传递
求解双曲型守恒律的五阶松弛格式
6
作者 陈建忠 史忠科 +1 位作者 封建湖 胡彦梅 《空气动力学学报》 CSCD 北大核心 2008年第4期508-512,共5页
给出了一种求解一维双曲型守恒律的五阶松弛格式。该格式以五阶WENO重构和显隐式Runge-Kutta方法为基础。本文格式保持了松弛格式简单的优点,即不用Riemann解算器和计算非线性通量函数的雅可比矩阵。用该格式对一维Euler方程进行了数值... 给出了一种求解一维双曲型守恒律的五阶松弛格式。该格式以五阶WENO重构和显隐式Runge-Kutta方法为基础。本文格式保持了松弛格式简单的优点,即不用Riemann解算器和计算非线性通量函数的雅可比矩阵。用该格式对一维Euler方程进行了数值试验,并与三阶和四阶松弛格式的计算结果进行了比较,结果表明本文的格式具有更低的数值耗散和更高的分辨率。 展开更多
关键词 双曲型守恒律 松弛格式 WENO重构
下载PDF
二维双曲型守恒律的一种五阶松弛格式
7
作者 陈建忠 史忠科 +1 位作者 封建湖 胡彦梅 《应用力学学报》 EI CAS CSCD 北大核心 2008年第1期124-128,共5页
松弛格式是Jin和Xin提出的无振荡有限差分方法,其主要思想是将守恒律转化为松弛方程组进行求解。本文用逐维五阶WENO重构和显隐式Runge-Kutta方法对松弛方程组的空间和时间进行离散,得到了一种求解二维双曲型守恒律五阶松弛格式。所得... 松弛格式是Jin和Xin提出的无振荡有限差分方法,其主要思想是将守恒律转化为松弛方程组进行求解。本文用逐维五阶WENO重构和显隐式Runge-Kutta方法对松弛方程组的空间和时间进行离散,得到了一种求解二维双曲型守恒律五阶松弛格式。所得格式保持了松弛格式简单的优点,不用求解Riemann问题和计算通量函数的雅可比矩阵。通过二维Burgers方程和二维浅水方程的数值算例验证了格式的有效性。 展开更多
关键词 二维双曲型守恒律 松弛格式 WENO重构 逐维方法
下载PDF
双曲型守恒律的一种三阶松弛格式
8
作者 陈建忠 史忠科 《动力学与控制学报》 2007年第4期289-292,共4页
对一维双曲型守恒律,给出了一种形式更简单、计算量更小的三阶松弛格式.该格式以三阶WENO重构和三阶显隐式Runge-Kutta方法为基础.由于不用求解Riemann问题和计算非线性通量函数的雅可比矩阵,所以本文格式保持了松弛格式简单的优点.数... 对一维双曲型守恒律,给出了一种形式更简单、计算量更小的三阶松弛格式.该格式以三阶WENO重构和三阶显隐式Runge-Kutta方法为基础.由于不用求解Riemann问题和计算非线性通量函数的雅可比矩阵,所以本文格式保持了松弛格式简单的优点.数值试验表明:该方法具有较高的分辨率. 展开更多
关键词 双曲型守恒律 松弛格式 WENO重构 显隐式Runge-Kutta方法
下载PDF
THE RELAXING SCHEMES FOR HAMILION-JACOBI EQUATIONS 被引量:2
9
作者 Hua-zhong Tang Hua-mu Wu (State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, 《Journal of Computational Mathematics》 SCIE CSCD 2001年第3期231-240,共10页
Hamilton-Jacobi equation appears frequently in applications, e.g., in differential games and control theory, and is closely related to hyperbolic conservation laws[3, 4, 12]. This is helpful in the design of differenc... Hamilton-Jacobi equation appears frequently in applications, e.g., in differential games and control theory, and is closely related to hyperbolic conservation laws[3, 4, 12]. This is helpful in the design of difference approximations for Hamilton-Jacobi equation and hyperbolic conservation laws. In this paper we present the relaxing system for HamiltonJacobi equations in arbitrary space dimensions, and high resolution relaxing schemes for Hamilton-Jacobi equation, based on using the local relaxation approximation. The schemes are numerically tested on a variety of 1D and 2D problems, including a problem related to optimal control problem. High-order accuracy in smooth regions, good resolution of discontinuities, and convergence to viscosity solutions are observed. 展开更多
关键词 The relaxing scheme The relaxing systems Hamilton-Jacobi equation hyperbolic conservation laws.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部