Three secondary amine terminated hyperbranched poly(ester-amine)s (defined as HPEA1, HPEA2 and HPEA3) were synthesized from piperazine (A2) and trimethylolpropane triacrylate (TMPTA, B3) at their molar ratios ...Three secondary amine terminated hyperbranched poly(ester-amine)s (defined as HPEA1, HPEA2 and HPEA3) were synthesized from piperazine (A2) and trimethylolpropane triacrylate (TMPTA, B3) at their molar ratios of 2.5:1, 2.25:1 and 2.0:1, respectively. The polymers were analyzed by 1H NMR, GPC, DSC and TGA. The results indicated that the ratio of secondary amine to tertiary amine and the content of secondary amine decreased, while the molecular weight, molecular weight distribution and glass transition temperature (Tg) increased from HPEA1 to HPEA3. Due to their reactive terminal groups and flexible chains, these polymers further reacted with an epoxy resin (E51) to form cured films under ambient conditions. With increasing the ratio between secondary amine groups and epoxy groups from 1:2 to 2:1, the gel content, film hardness and onset decomposing temperature of the cured samples increased. The good film performances should make the polymers as the components of non-solvent coating materials.展开更多
文摘Three secondary amine terminated hyperbranched poly(ester-amine)s (defined as HPEA1, HPEA2 and HPEA3) were synthesized from piperazine (A2) and trimethylolpropane triacrylate (TMPTA, B3) at their molar ratios of 2.5:1, 2.25:1 and 2.0:1, respectively. The polymers were analyzed by 1H NMR, GPC, DSC and TGA. The results indicated that the ratio of secondary amine to tertiary amine and the content of secondary amine decreased, while the molecular weight, molecular weight distribution and glass transition temperature (Tg) increased from HPEA1 to HPEA3. Due to their reactive terminal groups and flexible chains, these polymers further reacted with an epoxy resin (E51) to form cured films under ambient conditions. With increasing the ratio between secondary amine groups and epoxy groups from 1:2 to 2:1, the gel content, film hardness and onset decomposing temperature of the cured samples increased. The good film performances should make the polymers as the components of non-solvent coating materials.