The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing ...The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing a unified, standard, elegant, and open language and tools for numerous complicated mathematical and physical theories. So it is worth popularizing in the teaching of undergraduate physics and mathematics. Clifford algebras can be directly generalized to 2<sup>n</sup>-ary associative algebras. In this generalization, the matrix representation of the orthonormal basis of space-time plays an important role. The matrix representation carries more information than the abstract definition, such as determinant and the definition of inverse elements. Without this matrix representation, the discussion of hypercomplex numbers will be difficult. The zero norm set of hypercomplex numbers is a closed set of special geometric meanings, like the light-cone in the realistic space-time, which has no substantial effect on the algebraic calculus. The physical equations expressed in Clifford algebra have a simple formalism, symmetrical structure, standard derivation, complete content. Therefore, we can hope that this magical algebra can complete a new large synthesis of modern science.展开更多
文摘The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing a unified, standard, elegant, and open language and tools for numerous complicated mathematical and physical theories. So it is worth popularizing in the teaching of undergraduate physics and mathematics. Clifford algebras can be directly generalized to 2<sup>n</sup>-ary associative algebras. In this generalization, the matrix representation of the orthonormal basis of space-time plays an important role. The matrix representation carries more information than the abstract definition, such as determinant and the definition of inverse elements. Without this matrix representation, the discussion of hypercomplex numbers will be difficult. The zero norm set of hypercomplex numbers is a closed set of special geometric meanings, like the light-cone in the realistic space-time, which has no substantial effect on the algebraic calculus. The physical equations expressed in Clifford algebra have a simple formalism, symmetrical structure, standard derivation, complete content. Therefore, we can hope that this magical algebra can complete a new large synthesis of modern science.