Whether the ATP sensitive potassium channel opener pinacidil can provide myocardial protective effects in prolonged isolated global ischemic rat heart was investigated. On modified isolated rat working heart model, 4...Whether the ATP sensitive potassium channel opener pinacidil can provide myocardial protective effects in prolonged isolated global ischemic rat heart was investigated. On modified isolated rat working heart model, 40 hearts were divided into four groups randomly: Hyperpolarized arrest H K solution containing pinacidil (50 μmol/L) (P1 and P2) and depolarized arrest St. Thomas' solution (S1 and S2) subjected to 15 ℃ hypothermia, 60 min (P1 and S1) or 120 min (P1 and S2) of ischemia and 30 min reperfusion. The experimental indices included cardioplegic efficiency, cardiac function, coronary blood flow, myocardial enzyme release, myocardial water and ATP content. Hyperpolarized arrest provided significantly better recovery of cardiac function than depolarized arrest. Postischemic coronary flow and myocardial ATP content were higher. The arrest time of electro mechanical activities were longer than depolarized arrest. There were no differences among the groups in myocardial water contents. The hyperpolarized arrest solution containing pinacidil can provide a marked myocardial protective effect during prolonged hypothermic myocardial ischemia.展开更多
基金This project was supported by a grant from EducationalMinistry Foundation of China (No.[2 0 0 1]34 5 )
文摘Whether the ATP sensitive potassium channel opener pinacidil can provide myocardial protective effects in prolonged isolated global ischemic rat heart was investigated. On modified isolated rat working heart model, 40 hearts were divided into four groups randomly: Hyperpolarized arrest H K solution containing pinacidil (50 μmol/L) (P1 and P2) and depolarized arrest St. Thomas' solution (S1 and S2) subjected to 15 ℃ hypothermia, 60 min (P1 and S1) or 120 min (P1 and S2) of ischemia and 30 min reperfusion. The experimental indices included cardioplegic efficiency, cardiac function, coronary blood flow, myocardial enzyme release, myocardial water and ATP content. Hyperpolarized arrest provided significantly better recovery of cardiac function than depolarized arrest. Postischemic coronary flow and myocardial ATP content were higher. The arrest time of electro mechanical activities were longer than depolarized arrest. There were no differences among the groups in myocardial water contents. The hyperpolarized arrest solution containing pinacidil can provide a marked myocardial protective effect during prolonged hypothermic myocardial ischemia.