Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol...Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.展开更多
Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification...Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images.展开更多
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th...With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.展开更多
Hyperspectral image(HSI)classification has been one of themost important tasks in the remote sensing community over the last few decades.Due to the presence of highly correlated bands and limited training samples in H...Hyperspectral image(HSI)classification has been one of themost important tasks in the remote sensing community over the last few decades.Due to the presence of highly correlated bands and limited training samples in HSI,discriminative feature extraction was challenging for traditional machine learning methods.Recently,deep learning based methods have been recognized as powerful feature extraction tool and have drawn a significant amount of attention in HSI classification.Among various deep learning models,convolutional neural networks(CNNs)have shown huge success and offered great potential to yield high performance in HSI classification.Motivated by this successful performance,this paper presents a systematic review of different CNN architectures for HSI classification and provides some future guidelines.To accomplish this,our study has taken a few important steps.First,we have focused on different CNN architectures,which are able to extract spectral,spatial,and joint spectral-spatial features.Then,many publications related to CNN based HSI classifications have been reviewed systematically.Further,a detailed comparative performance analysis has been presented between four CNN models namely 1D CNN,2D CNN,3D CNN,and feature fusion based CNN(FFCNN).Four benchmark HSI datasets have been used in our experiment for evaluating the performance.Finally,we concluded the paper with challenges on CNN based HSI classification and future guidelines that may help the researchers to work on HSI classification using CNN.展开更多
Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale inf...Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.展开更多
Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed...Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.展开更多
Accurate histopathology classification is a crucial factor in the diagnosis and treatment of Cholangiocarcinoma(CCA).Hyperspectral images(HSI)provide rich spectral information than ordinary RGB images,making them more...Accurate histopathology classification is a crucial factor in the diagnosis and treatment of Cholangiocarcinoma(CCA).Hyperspectral images(HSI)provide rich spectral information than ordinary RGB images,making them more useful for medical diagnosis.The Convolutional Neural Network(CNN)is commonly employed in hyperspectral image classification due to its remarkable capacity for feature extraction and image classification.However,many existing CNN-based HSI classification methods tend to ignore the importance of image spatial context information and the interdependence between spectral channels,leading to unsatisfied classification performance.Thus,to address these issues,this paper proposes a Spatial-Spectral Joint Network(SSJN)model for hyperspectral image classification that utilizes spatial self-attention and spectral feature extraction.The SSJN model is derived from the ResNet18 network and implemented with the non-local and Coordinate Attention(CA)modules,which extract long-range dependencies on image space and enhance spatial features through the Branch Attention(BA)module to emphasize the region of interest.Furthermore,the SSJN model employs Conv-LSTM modules to extract long-range depen-dencies in the image spectral domain.This addresses the gradient disappearance/explosion phenom-ena and enhances the model classification accuracy.The experimental results show that the pro-posed SSJN model is more efficient in leveraging the spatial and spectral information of hyperspec-tral images on multidimensional microspectral datasets of CCA,leading to higher classification accuracy,and may have useful references for medical diagnosis of CCA.展开更多
Recently,deep learning has achieved considerable results in the hyperspectral image(HSI)classification.However,most available deep networks require ample and authentic samples to better train the models,which is expen...Recently,deep learning has achieved considerable results in the hyperspectral image(HSI)classification.However,most available deep networks require ample and authentic samples to better train the models,which is expensive and inefficient in practical tasks.Existing few‐shot learning(FSL)methods generally ignore the potential relationships between non‐local spatial samples that would better represent the underlying features of HSI.To solve the above issues,a novel deep transformer and few‐shot learning(DTFSL)classification framework is proposed,attempting to realize fine‐grained classification of HSI with only a few‐shot instances.Specifically,the spatial attention and spectral query modules are introduced to overcome the constraint of the convolution kernel and consider the information between long‐distance location(non‐local)samples to reduce the uncertainty of classes.Next,the network is trained with episodes and task‐based learning strategies to learn a metric space,which can continuously enhance its modelling capability.Furthermore,the developed approach combines the advantages of domain adaptation to reduce the variation in inter‐domain distribution and realize distribution alignment.On three publicly available HSI data,extensive experiments have indicated that the proposed DT‐FSL yields better results concerning state‐of‐the‐art algorithms.展开更多
One of the most challenges in the remote sensing applications is Hyperspectral image classification. Hyperspectral image classification accuracy depends on the number of classes, training samples and features space di...One of the most challenges in the remote sensing applications is Hyperspectral image classification. Hyperspectral image classification accuracy depends on the number of classes, training samples and features space dimension. The classification performance degrades to increase the number of classes and reduce the number of training samples. The increase in the number of feature follows a considerable rise in data redundancy and computational complexity leads to the classification accuracy confusion. In order to deal with the Hughes phenomenon and using hyperspectral image data, a hierarchical algorithm based on SVM is proposed in this paper. In the proposed hierarchical algorithm, classification is accomplished in two levels. Firstly, the clusters included similar classes is defined according to Euclidean distance between the class centers. The SVM algorithm is accomplished on clusters with selected features. In next step, classes in every cluster are discriminated based on SVM algorithm and the fewer features. The features are selected based on correlation criteria between the classes, determined in every level, and features. The numerical results show that the accuracy classification is improved using the proposed Hierarchical SVM rather than SVM. The number of bands used for classification was reduced to 50, while the classification accuracy increased from 73% to 80% with applying the conventional SVM and the proposed Hierarchical SVM algorithm, respectively.展开更多
Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art(SOTA)models e.g.,Attention Graph and Vision Transformer.When training,validation,and test sets overlap or share data,it introduces...Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art(SOTA)models e.g.,Attention Graph and Vision Transformer.When training,validation,and test sets overlap or share data,it introduces a bias that inflates performance metrics and prevents accurate assessment of a model’s true ability to generalize to new examples.This paper presents an innovative disjoint sampling approach for training SOTA models for the Hyperspectral Image Classification(HSIC).By separating training,validation,and test data without overlap,the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.Experiments demonstrate the approach significantly improves a model’s generalization compared to alternatives that include training and validation data in test data(A trivial approach involves testing the model on the entire Hyperspectral dataset to generate the ground truth maps.This approach produces higher accuracy but ultimately results in low generalization performance).Disjoint sampling eliminates data leakage between sets and provides reliable metrics for benchmarking progress in HSIC.Disjoint sampling is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.Overall,with the disjoint test set,the performance of the deep models achieves 96.36%accuracy on Indian Pines data,99.73%on Pavia University data,98.29%on University of Houston data,99.43%on Botswana data,and 99.88%on Salinas data.展开更多
Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving ...Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process.展开更多
In the field of hyperspectral image(HSI)classification in remote sensing,the combination of spectral and spatial features has gained considerable attention.In addition,the multiscale feature extraction approach is ver...In the field of hyperspectral image(HSI)classification in remote sensing,the combination of spectral and spatial features has gained considerable attention.In addition,the multiscale feature extraction approach is very effective at improving the classification accuracy for HSIs,capable of capturing a large amount of intrinsic information.However,some existing methods for extracting spectral and spatial features can only generate low-level features and consider limited scales,leading to low classification results,and dense-connection based methods enhance the feature propagation at the cost of high model complexity.This paper presents a two-branch multiscale spectral-spatial feature extraction network(TBMSSN)for HSI classification.We design the mul-tiscale spectral feature extraction(MSEFE)and multiscale spatial feature extraction(MSAFE)modules to improve the feature representation,and a spatial attention mechanism is applied in the MSAFE module to reduce redundant information and enhance the representation of spatial fea-tures at multiscale.Then we densely connect series of MSEFE or MSAFE modules respectively in a two-branch framework to balance efficiency and effectiveness,alleviate the vanishing-gradient problem and strengthen the feature propagation.To evaluate the effectiveness of the proposed method,the experimental results were carried out on bench mark HsI datasets,demonstrating that TBMSSN obtained higher classification accuracy compared with several state-of-the-art methods.展开更多
Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effecti...Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effectively alleviating the bandwidth pressure during data transmission.However,CS has many shortcomings in the transmission of hyperspectral image(HSI)data.This work aims to consider the application of CS in the transmission of hyperspectral image(HSI)data,and provides a feasible research scheme for CS of HSI data.HSI has rich spectral information and spatial information in bands,which can reflect the physical properties of the target.Most of the hyperspectral image compressed sensing(HSICS)algorithms cannot effectively use the inter-band information of HSI,resulting in poor reconstruction effects.In this paper,A three-stage hyperspectral image compression sensing algorithm(Three-stages HSICS)is proposed to obtain intra-band and inter-band characteristics of HSI,which can improve the reconstruction accuracy of HSI.Here,we establish a multi-objective band selection(Mop-BS)model,amulti-hypothesis prediction(MHP)model and a residual sparse(ReWSR)model for HSI,and use a staged reconstruction method to restore the compressed HSI.The simulation results show that the three-stage HSICS successfully improves the reconstruction accuracy of HSICS,and it performs best among all comparison algorithms.展开更多
Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes.Much spatial information and spectral signatures of hyperspectral images(HSIs)present greater pot...Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes.Much spatial information and spectral signatures of hyperspectral images(HSIs)present greater potential for detecting and classifying fine crops.The accurate classification of crop kinds utilizing hyperspectral remote sensing imaging(RSI)has become an indispensable application in the agricultural domain.It is significant for the prediction and growth monitoring of crop yields.Amongst the deep learning(DL)techniques,Convolution Neural Network(CNN)was the best method for classifying HSI for their incredible local contextual modeling ability,enabling spectral and spatial feature extraction.This article designs a Hybrid Multi-Strategy Aquila Optimization with a Deep Learning-Driven Crop Type Classification(HMAODL-CTC)algorithm onHSI.The proposed HMAODL-CTC model mainly intends to categorize different types of crops on HSI.To accomplish this,the presented HMAODL-CTC model initially carries out image preprocessing to improve image quality.In addition,the presented HMAODL-CTC model develops dilated convolutional neural network(CNN)for feature extraction.For hyperparameter tuning of the dilated CNN model,the HMAO algorithm is utilized.Eventually,the presented HMAODL-CTC model uses an extreme learning machine(ELM)model for crop type classification.A comprehensive set of simulations were performed to illustrate the enhanced performance of the presented HMAODL-CTC algorithm.Extensive comparison studies reported the improved performance of the presented HMAODL-CTC algorithm over other compared methods.展开更多
This paper develops a deep learning classification method with fully-connected 8-layers characteristics to classification of coastal wetland based on CHRIS hyperspectral image. The method combined spectral feature and...This paper develops a deep learning classification method with fully-connected 8-layers characteristics to classification of coastal wetland based on CHRIS hyperspectral image. The method combined spectral feature and multi-spatial texture feature information has been applied in the Huanghe(Yellow) River Estuary coastal wetland.The results show that:(1) Based on testing samples, the DCNN model combined spectral feature and texture feature after K-L transformation appear high classification accuracy, which is up to 99%.(2) The accuracy by using spectral feature with all the texture feature is lower than that using spectral only and combing spectral and texture feature after K-L transformation. The DCNN classification accuracy using spectral feature and texture feature after K-L transformation was up to 99.38%, and the outperformed that of all the texture feature by 4.15%.(3) The classification accuracy of the DCNN method achieves better performance than other methods based on the whole validation image, with an overall accuracy of 84.64% and the Kappa coefficient of 0.80.(4) The developed DCNN model classification algorithm ensured the accuracy of all types is more balanced, and it also greatly improved the accuracy of tidal flat and farmland, while kept the classification accuracy of main types almost invariant compared to the shallow algorithms. The classification accuracy of tidal flat and farmland is up to 79.26% and 56.72%respectively based on the DCNN model. And it improves by about 2.51% and 10.6% compared with that of the other shallow classification methods.展开更多
The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. ...The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. The hybrid transforms are that Karhunen-Loève Transform (KLT) which decorrelates spectral data of a hyperspectral image, and the integer Discrete Wavelet Transform (DWT) which is applied to the spatial data and produces decorrelated wavelet coefficients. Our simpler transform-based coder is inspired by Shapiro’s EZW algorithm, but encodes residual values and only implements dominant pass incorporating six symbols. The proposed method will be examined on AVIRIS images and evaluated using compression ratio for both lossless and lossy compression, and signal to noise ratio (SNR) for lossy compression. Experimental results show that the proposed image compression not only is more efficient but also has better compression ratio.展开更多
Data mining techniques are used to discover knowledge from GIS database in order to improve remote sensing image classification.Two learning granularities are proposed for inductive learning from spatial data,one is s...Data mining techniques are used to discover knowledge from GIS database in order to improve remote sensing image classification.Two learning granularities are proposed for inductive learning from spatial data,one is spatial object granularity,the other is pixel granularity.We also present an approach to combine inductive learning with conventional image classification methods,which selects class probability of Bayes classification as learning attributes.A land use classification experiment is performed in the Beijing area using SPOT multi_spectral image and GIS data.Rules about spatial distribution patterns and shape features are discovered by C5.0 inductive learning algorithm and then the image is reclassified by deductive reasoning.Comparing with the result produced only by Bayes classification,the overall accuracy increased by 11% and the accuracy of some classes,such as garden and forest,increased by about 30%.The results indicate that inductive learning can resolve spectral confusion to a great extent.Combining Bayes method with inductive learning not only improves classification accuracy greatly,but also extends the classification by subdividing some classes with the discovered knowledge.展开更多
A sixteen tree method of data compression of bilevel image is described.Thismethod has high efficiency,no information loss during compression,and easy to realize.
Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications.Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information...Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications.Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information of each pixel in the third dimension.The classification accuracy of hyperspectral images(HSI)increases significantly by employing both spatial and spectral features.For this work,the data was acquired using an airborne hyperspectral imager system which collected HSI in the visible and near-infrared(VNIR)range of 400 to 1000 nm wavelength within 180 spectral bands.The dataset is collected for nine different crops on agricultural land with a spectral resolution of 3.3 nm wavelength for each pixel.The data was cleaned from geometric distortions and stored with the class labels and annotations of global localization using the inertial navigation system.In this study,a unique pixel-based approach was designed to improve the crops'classification accuracy by using the edge-preserving features(EPF)and principal component analysis(PCA)in conjunction.The preliminary processing generated the high-dimensional EPF stack by applying the edge-preserving filters on acquired HSI.In the second step,this high dimensional stack was treated with the PCA for dimensionality reduction without losing significant spectral information.The resultant feature space(PCA-EPF)demonstrated enhanced class separability for improved crop classification with reduced dimensionality and computational cost.The support vector machines classifier was employed for multiclass classification of target crops using PCA-EPF.The classification performance evaluation was measured in terms of individual class accuracy,overall accuracy,average accuracy,and Cohen kappa factor.The proposed scheme achieved greater than 90%results for all the performance evaluation metrics.The PCA-EPF proved to be an effective attribute for crop classification using hyperspectral imaging in the VNIR range.The proposed scheme is well-suited for practical applications of crops and landfill estimations using agricultural remote sensing methods.展开更多
In this paper, we propose a three-dimensional Set Partitioned Embedded ZeroBlock Coding (3D SPEZBC) lossy-to-lossless compression algorithm for hyperspectral image which is an improved three-dimensional Embedded ZeroB...In this paper, we propose a three-dimensional Set Partitioned Embedded ZeroBlock Coding (3D SPEZBC) lossy-to-lossless compression algorithm for hyperspectral image which is an improved three-dimensional Embedded ZeroBlock Coding (3D EZBC) algorithm. The algorithm adopts the 3D integer wavelet packet transform proposed by Xiong et al. to decorrelate, the set-based partitioning zeroblock coding to process bitplane coding and the con-text-based adaptive arithmetic coding for further entropy coding. The theoretical analysis and experimental results demonstrate that 3D SPEZBC not only provides the same excellent compression performances as 3D EZBC, but also reduces the memory requirement compared with 3D EZBC. For achieving good coding performance, the diverse wave-let filters and unitary scaling factors are compared and evaluated, and the best choices were given. In comparison with several state-of-the-art wavelet coding algorithms, the proposed algorithm provides better compression performance and unsupervised classification accuracy.展开更多
基金Natural Science Foundation of Shandong Province,China(Grant No.ZR202111230202).
文摘Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
基金National Natural Science Foundation of China(No.62201457)Natural Science Foundation of Shaanxi Province(Nos.2022JQ-668,2022JQ-588)。
文摘Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images.
文摘With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.
文摘Hyperspectral image(HSI)classification has been one of themost important tasks in the remote sensing community over the last few decades.Due to the presence of highly correlated bands and limited training samples in HSI,discriminative feature extraction was challenging for traditional machine learning methods.Recently,deep learning based methods have been recognized as powerful feature extraction tool and have drawn a significant amount of attention in HSI classification.Among various deep learning models,convolutional neural networks(CNNs)have shown huge success and offered great potential to yield high performance in HSI classification.Motivated by this successful performance,this paper presents a systematic review of different CNN architectures for HSI classification and provides some future guidelines.To accomplish this,our study has taken a few important steps.First,we have focused on different CNN architectures,which are able to extract spectral,spatial,and joint spectral-spatial features.Then,many publications related to CNN based HSI classifications have been reviewed systematically.Further,a detailed comparative performance analysis has been presented between four CNN models namely 1D CNN,2D CNN,3D CNN,and feature fusion based CNN(FFCNN).Four benchmark HSI datasets have been used in our experiment for evaluating the performance.Finally,we concluded the paper with challenges on CNN based HSI classification and future guidelines that may help the researchers to work on HSI classification using CNN.
基金Sponsored by the Project of Multi Modal Monitoring Information Learning Fusion and Health Warning Diagnosis of Wind Power Transmission System(Grant No.61803329)the Research on Product Quality Inspection Method Based on Time Series Analysis(Grant No.201703A020)the Research on the Theory and Reliability of Group Coordinated Control of Hydraulic System for Large Engineering Transportation Vehicles(Grant No.51675461).
文摘Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.
基金National Natural Foundation of China(No.41971279)Fundamental Research Funds of the Central Universities(No.B200202012)。
文摘Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.
基金supported by National Natural Science Foundation of China(No.62101040).
文摘Accurate histopathology classification is a crucial factor in the diagnosis and treatment of Cholangiocarcinoma(CCA).Hyperspectral images(HSI)provide rich spectral information than ordinary RGB images,making them more useful for medical diagnosis.The Convolutional Neural Network(CNN)is commonly employed in hyperspectral image classification due to its remarkable capacity for feature extraction and image classification.However,many existing CNN-based HSI classification methods tend to ignore the importance of image spatial context information and the interdependence between spectral channels,leading to unsatisfied classification performance.Thus,to address these issues,this paper proposes a Spatial-Spectral Joint Network(SSJN)model for hyperspectral image classification that utilizes spatial self-attention and spectral feature extraction.The SSJN model is derived from the ResNet18 network and implemented with the non-local and Coordinate Attention(CA)modules,which extract long-range dependencies on image space and enhance spatial features through the Branch Attention(BA)module to emphasize the region of interest.Furthermore,the SSJN model employs Conv-LSTM modules to extract long-range depen-dencies in the image spectral domain.This addresses the gradient disappearance/explosion phenom-ena and enhances the model classification accuracy.The experimental results show that the pro-posed SSJN model is more efficient in leveraging the spatial and spectral information of hyperspec-tral images on multidimensional microspectral datasets of CCA,leading to higher classification accuracy,and may have useful references for medical diagnosis of CCA.
基金supported by the National Natural Science Foundation of China under Grant 62161160336 and Grant 42030111.
文摘Recently,deep learning has achieved considerable results in the hyperspectral image(HSI)classification.However,most available deep networks require ample and authentic samples to better train the models,which is expensive and inefficient in practical tasks.Existing few‐shot learning(FSL)methods generally ignore the potential relationships between non‐local spatial samples that would better represent the underlying features of HSI.To solve the above issues,a novel deep transformer and few‐shot learning(DTFSL)classification framework is proposed,attempting to realize fine‐grained classification of HSI with only a few‐shot instances.Specifically,the spatial attention and spectral query modules are introduced to overcome the constraint of the convolution kernel and consider the information between long‐distance location(non‐local)samples to reduce the uncertainty of classes.Next,the network is trained with episodes and task‐based learning strategies to learn a metric space,which can continuously enhance its modelling capability.Furthermore,the developed approach combines the advantages of domain adaptation to reduce the variation in inter‐domain distribution and realize distribution alignment.On three publicly available HSI data,extensive experiments have indicated that the proposed DT‐FSL yields better results concerning state‐of‐the‐art algorithms.
文摘One of the most challenges in the remote sensing applications is Hyperspectral image classification. Hyperspectral image classification accuracy depends on the number of classes, training samples and features space dimension. The classification performance degrades to increase the number of classes and reduce the number of training samples. The increase in the number of feature follows a considerable rise in data redundancy and computational complexity leads to the classification accuracy confusion. In order to deal with the Hughes phenomenon and using hyperspectral image data, a hierarchical algorithm based on SVM is proposed in this paper. In the proposed hierarchical algorithm, classification is accomplished in two levels. Firstly, the clusters included similar classes is defined according to Euclidean distance between the class centers. The SVM algorithm is accomplished on clusters with selected features. In next step, classes in every cluster are discriminated based on SVM algorithm and the fewer features. The features are selected based on correlation criteria between the classes, determined in every level, and features. The numerical results show that the accuracy classification is improved using the proposed Hierarchical SVM rather than SVM. The number of bands used for classification was reduced to 50, while the classification accuracy increased from 73% to 80% with applying the conventional SVM and the proposed Hierarchical SVM algorithm, respectively.
基金the Researchers Supporting Project number(RSPD2024R848),King Saud University,Riyadh,Saudi Arabia.
文摘Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art(SOTA)models e.g.,Attention Graph and Vision Transformer.When training,validation,and test sets overlap or share data,it introduces a bias that inflates performance metrics and prevents accurate assessment of a model’s true ability to generalize to new examples.This paper presents an innovative disjoint sampling approach for training SOTA models for the Hyperspectral Image Classification(HSIC).By separating training,validation,and test data without overlap,the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during training or validation.Experiments demonstrate the approach significantly improves a model’s generalization compared to alternatives that include training and validation data in test data(A trivial approach involves testing the model on the entire Hyperspectral dataset to generate the ground truth maps.This approach produces higher accuracy but ultimately results in low generalization performance).Disjoint sampling eliminates data leakage between sets and provides reliable metrics for benchmarking progress in HSIC.Disjoint sampling is critical for advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.Overall,with the disjoint test set,the performance of the deep models achieves 96.36%accuracy on Indian Pines data,99.73%on Pavia University data,98.29%on University of Houston data,99.43%on Botswana data,and 99.88%on Salinas data.
文摘Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process.
基金supported by the National Natural Science Foundation of China(62077038,61672405,62176196 and 62271374)。
文摘In the field of hyperspectral image(HSI)classification in remote sensing,the combination of spectral and spatial features has gained considerable attention.In addition,the multiscale feature extraction approach is very effective at improving the classification accuracy for HSIs,capable of capturing a large amount of intrinsic information.However,some existing methods for extracting spectral and spatial features can only generate low-level features and consider limited scales,leading to low classification results,and dense-connection based methods enhance the feature propagation at the cost of high model complexity.This paper presents a two-branch multiscale spectral-spatial feature extraction network(TBMSSN)for HSI classification.We design the mul-tiscale spectral feature extraction(MSEFE)and multiscale spatial feature extraction(MSAFE)modules to improve the feature representation,and a spatial attention mechanism is applied in the MSAFE module to reduce redundant information and enhance the representation of spatial fea-tures at multiscale.Then we densely connect series of MSEFE or MSAFE modules respectively in a two-branch framework to balance efficiency and effectiveness,alleviate the vanishing-gradient problem and strengthen the feature propagation.To evaluate the effectiveness of the proposed method,the experimental results were carried out on bench mark HsI datasets,demonstrating that TBMSSN obtained higher classification accuracy compared with several state-of-the-art methods.
基金supported by the National Natural Science Foundation of China under Grant No.61806138Key R&D program of Shanxi Province(High Technology)under Grant No.201903D121119Science and Technology Development Foundation of the Central Guiding Local under Grant No.YDZJSX2021A038.
文摘Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effectively alleviating the bandwidth pressure during data transmission.However,CS has many shortcomings in the transmission of hyperspectral image(HSI)data.This work aims to consider the application of CS in the transmission of hyperspectral image(HSI)data,and provides a feasible research scheme for CS of HSI data.HSI has rich spectral information and spatial information in bands,which can reflect the physical properties of the target.Most of the hyperspectral image compressed sensing(HSICS)algorithms cannot effectively use the inter-band information of HSI,resulting in poor reconstruction effects.In this paper,A three-stage hyperspectral image compression sensing algorithm(Three-stages HSICS)is proposed to obtain intra-band and inter-band characteristics of HSI,which can improve the reconstruction accuracy of HSI.Here,we establish a multi-objective band selection(Mop-BS)model,amulti-hypothesis prediction(MHP)model and a residual sparse(ReWSR)model for HSI,and use a staged reconstruction method to restore the compressed HSI.The simulation results show that the three-stage HSICS successfully improves the reconstruction accuracy of HSICS,and it performs best among all comparison algorithms.
基金This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R384)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes.Much spatial information and spectral signatures of hyperspectral images(HSIs)present greater potential for detecting and classifying fine crops.The accurate classification of crop kinds utilizing hyperspectral remote sensing imaging(RSI)has become an indispensable application in the agricultural domain.It is significant for the prediction and growth monitoring of crop yields.Amongst the deep learning(DL)techniques,Convolution Neural Network(CNN)was the best method for classifying HSI for their incredible local contextual modeling ability,enabling spectral and spatial feature extraction.This article designs a Hybrid Multi-Strategy Aquila Optimization with a Deep Learning-Driven Crop Type Classification(HMAODL-CTC)algorithm onHSI.The proposed HMAODL-CTC model mainly intends to categorize different types of crops on HSI.To accomplish this,the presented HMAODL-CTC model initially carries out image preprocessing to improve image quality.In addition,the presented HMAODL-CTC model develops dilated convolutional neural network(CNN)for feature extraction.For hyperparameter tuning of the dilated CNN model,the HMAO algorithm is utilized.Eventually,the presented HMAODL-CTC model uses an extreme learning machine(ELM)model for crop type classification.A comprehensive set of simulations were performed to illustrate the enhanced performance of the presented HMAODL-CTC algorithm.Extensive comparison studies reported the improved performance of the presented HMAODL-CTC algorithm over other compared methods.
基金The National Natural Science Foundation of China under contract No.61601133 and 41206172the Marine Application System of High Resolution Earth Observation System Major Project
文摘This paper develops a deep learning classification method with fully-connected 8-layers characteristics to classification of coastal wetland based on CHRIS hyperspectral image. The method combined spectral feature and multi-spatial texture feature information has been applied in the Huanghe(Yellow) River Estuary coastal wetland.The results show that:(1) Based on testing samples, the DCNN model combined spectral feature and texture feature after K-L transformation appear high classification accuracy, which is up to 99%.(2) The accuracy by using spectral feature with all the texture feature is lower than that using spectral only and combing spectral and texture feature after K-L transformation. The DCNN classification accuracy using spectral feature and texture feature after K-L transformation was up to 99.38%, and the outperformed that of all the texture feature by 4.15%.(3) The classification accuracy of the DCNN method achieves better performance than other methods based on the whole validation image, with an overall accuracy of 84.64% and the Kappa coefficient of 0.80.(4) The developed DCNN model classification algorithm ensured the accuracy of all types is more balanced, and it also greatly improved the accuracy of tidal flat and farmland, while kept the classification accuracy of main types almost invariant compared to the shallow algorithms. The classification accuracy of tidal flat and farmland is up to 79.26% and 56.72%respectively based on the DCNN model. And it improves by about 2.51% and 10.6% compared with that of the other shallow classification methods.
文摘The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. The hybrid transforms are that Karhunen-Loève Transform (KLT) which decorrelates spectral data of a hyperspectral image, and the integer Discrete Wavelet Transform (DWT) which is applied to the spatial data and produces decorrelated wavelet coefficients. Our simpler transform-based coder is inspired by Shapiro’s EZW algorithm, but encodes residual values and only implements dominant pass incorporating six symbols. The proposed method will be examined on AVIRIS images and evaluated using compression ratio for both lossless and lossy compression, and signal to noise ratio (SNR) for lossy compression. Experimental results show that the proposed image compression not only is more efficient but also has better compression ratio.
文摘Data mining techniques are used to discover knowledge from GIS database in order to improve remote sensing image classification.Two learning granularities are proposed for inductive learning from spatial data,one is spatial object granularity,the other is pixel granularity.We also present an approach to combine inductive learning with conventional image classification methods,which selects class probability of Bayes classification as learning attributes.A land use classification experiment is performed in the Beijing area using SPOT multi_spectral image and GIS data.Rules about spatial distribution patterns and shape features are discovered by C5.0 inductive learning algorithm and then the image is reclassified by deductive reasoning.Comparing with the result produced only by Bayes classification,the overall accuracy increased by 11% and the accuracy of some classes,such as garden and forest,increased by about 30%.The results indicate that inductive learning can resolve spectral confusion to a great extent.Combining Bayes method with inductive learning not only improves classification accuracy greatly,but also extends the classification by subdividing some classes with the discovered knowledge.
文摘A sixteen tree method of data compression of bilevel image is described.Thismethod has high efficiency,no information loss during compression,and easy to realize.
文摘Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications.Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information of each pixel in the third dimension.The classification accuracy of hyperspectral images(HSI)increases significantly by employing both spatial and spectral features.For this work,the data was acquired using an airborne hyperspectral imager system which collected HSI in the visible and near-infrared(VNIR)range of 400 to 1000 nm wavelength within 180 spectral bands.The dataset is collected for nine different crops on agricultural land with a spectral resolution of 3.3 nm wavelength for each pixel.The data was cleaned from geometric distortions and stored with the class labels and annotations of global localization using the inertial navigation system.In this study,a unique pixel-based approach was designed to improve the crops'classification accuracy by using the edge-preserving features(EPF)and principal component analysis(PCA)in conjunction.The preliminary processing generated the high-dimensional EPF stack by applying the edge-preserving filters on acquired HSI.In the second step,this high dimensional stack was treated with the PCA for dimensionality reduction without losing significant spectral information.The resultant feature space(PCA-EPF)demonstrated enhanced class separability for improved crop classification with reduced dimensionality and computational cost.The support vector machines classifier was employed for multiclass classification of target crops using PCA-EPF.The classification performance evaluation was measured in terms of individual class accuracy,overall accuracy,average accuracy,and Cohen kappa factor.The proposed scheme achieved greater than 90%results for all the performance evaluation metrics.The PCA-EPF proved to be an effective attribute for crop classification using hyperspectral imaging in the VNIR range.The proposed scheme is well-suited for practical applications of crops and landfill estimations using agricultural remote sensing methods.
文摘In this paper, we propose a three-dimensional Set Partitioned Embedded ZeroBlock Coding (3D SPEZBC) lossy-to-lossless compression algorithm for hyperspectral image which is an improved three-dimensional Embedded ZeroBlock Coding (3D EZBC) algorithm. The algorithm adopts the 3D integer wavelet packet transform proposed by Xiong et al. to decorrelate, the set-based partitioning zeroblock coding to process bitplane coding and the con-text-based adaptive arithmetic coding for further entropy coding. The theoretical analysis and experimental results demonstrate that 3D SPEZBC not only provides the same excellent compression performances as 3D EZBC, but also reduces the memory requirement compared with 3D EZBC. For achieving good coding performance, the diverse wave-let filters and unitary scaling factors are compared and evaluated, and the best choices were given. In comparison with several state-of-the-art wavelet coding algorithms, the proposed algorithm provides better compression performance and unsupervised classification accuracy.