If dμ is the Fourier transform of a smooth measure,dμ on the hypersphere Sn-1(n≥2)the there exists a constant C dependent only on n such that |dμ(y) |≤C(1+ |y |)-(n-1) /2 for all y∈Rn. In this paper, we show tha...If dμ is the Fourier transform of a smooth measure,dμ on the hypersphere Sn-1(n≥2)the there exists a constant C dependent only on n such that |dμ(y) |≤C(1+ |y |)-(n-1) /2 for all y∈Rn. In this paper, we show that the above statement is false for non-smooth measures. And we present the corresponding estimations far the Fourier transforms of certain non-smooth measures on Sn-1.展开更多
基金This research is supported by a grant of NSF of P.R.China.
文摘If dμ is the Fourier transform of a smooth measure,dμ on the hypersphere Sn-1(n≥2)the there exists a constant C dependent only on n such that |dμ(y) |≤C(1+ |y |)-(n-1) /2 for all y∈Rn. In this paper, we show that the above statement is false for non-smooth measures. And we present the corresponding estimations far the Fourier transforms of certain non-smooth measures on Sn-1.