Being an emerging body-shaping technology of fat cell disruption,high-intensity focused ultrasound has been investigated intensively in recent years for its favorable natures such as painlessness,safety and noninvasio...Being an emerging body-shaping technology of fat cell disruption,high-intensity focused ultrasound has been investigated intensively in recent years for its favorable natures such as painlessness,safety and noninvasion.One of the major problems for the technology,however,is the overheating of transducers.In this study,we modified the transducer design in order to solve the overheating problem.We simulated the performance of the modified design by finite element analysis and fabricated the newly designed transducer.By measuring the actual performance data,we proved that the new design can effectively reduce temperature rise while keeping the acoustic intensity field unaffected.展开更多
High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,tempe...High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.10904093 and 61031003)the Science and Technology Grant Scheme funds from Shenzhen Government(No.08CXY-23).
文摘Being an emerging body-shaping technology of fat cell disruption,high-intensity focused ultrasound has been investigated intensively in recent years for its favorable natures such as painlessness,safety and noninvasion.One of the major problems for the technology,however,is the overheating of transducers.In this study,we modified the transducer design in order to solve the overheating problem.We simulated the performance of the modified design by finite element analysis and fabricated the newly designed transducer.By measuring the actual performance data,we proved that the new design can effectively reduce temperature rise while keeping the acoustic intensity field unaffected.
基金Project(11174077)supported by the National Natural Science Foundation of ChinaProject(11JJ3079)supported by the Hunan Provincial Natural Science Foundation of ChinaProjects(12C0237,11C0844)supported by the Science Research Program of Education Department of Hunan Province,China
文摘High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range.