BACKGROUND: Hypothalamus-pituitary-adrenal (HPA) axis dysfunction has been closely linked to anxiety. Previous studies have shown that Valeriana jatamansi Jones extract exhibits clear anxiolytic effects, but it is ...BACKGROUND: Hypothalamus-pituitary-adrenal (HPA) axis dysfunction has been closely linked to anxiety. Previous studies have shown that Valeriana jatamansi Jones extract exhibits clear anxiolytic effects, but it is unclear about the mechanism underlying regulation of the HPA axis dysfunction in these anxiolytic effects. OBJECTIVE: To observe the effects of Valeriana jatamansi Jones (Zhizhu Xiang) extract on HPA axis function in a rat model of anxiety, and to compare these effects with positive control estazolam. DESIGN, TIME AND SETTING: Randomized, controlled, animal experiment was performed at Chengdu University of Traditional Chinese Medicine, China, between February and September in 2006. MATERIALS: Estazolam was purchased from Shanghai Jiufu Pharmaceutical, China; Valeriana jatamansiJones was purchased from the Lotus Pond Market for Chinese Herbal Medicine in Chengdu. It consisted of iridoids and flavonoid components. METHODS: A total of 72 Sprague Dawley rats, aged 2 months, were randomly assigned to 6 groups low-, medium-, and high-dose Valerianajatamansi Jones groups intragastrically injected with 0.3, 0.6, and 0.9 g/kg per day Valerianajatamansi Jones extract, respectively; estazolam group intragastrically injected with 1.5 mg/kg per day estazolam; model and normal groups administered 5 mL physiological saline. Anxiety was established in all groups, except the normal group, through the use of elevated plus-maze test at 7 days following drug administration. MAIN OUTCOME MEASURES: Blood β-endorphin and corticosterone levels were determined using enzyme-linked immunosorbent assay following treatment with ValerianajatamansiJones extract. Expressions of HPA axis-related genes were measured by cDNA microarray. RESULTS: Blood β-endorphin and corticosterone levels were significantly greater in the model group than in the normal group. Compared with the model group, levels decreased with Valeriana jatamansi Jones extract or estazolam treatment, particularly in the low-dose Valeriana jatamansi Jones group (P〈 0.01). cDNA microarray results demonstrated that corticotropin-releasing hormone and Orexin, which are associated with HPA axis function, were differentially expressed; expression increased in the model group, but decreased in rats treated with Valerianajatamansi Jones extract. CONCLUSION: Valerianajatamansi Jones extract plays a role in regulating HPA axis function in a rat model of anxiety, and this effect was superior to estazolam.展开更多
Hypothalamic Corticotropin-releasing factor (CRF) directly activates the hypothalamic pituitary adrenal axis (HPA axis) during the surgical trauma induced stress response. Electroacupuncture (EA) has been demonstrated...Hypothalamic Corticotropin-releasing factor (CRF) directly activates the hypothalamic pituitary adrenal axis (HPA axis) during the surgical trauma induced stress response. Electroacupuncture (EA) has been demonstrated to have stress relieving effects in breast surgery, colorectal surgery, prostatectomy and craniotomy. This study was aimed to investigate the hypothesis that EA could regulate hypothalamic CRF in surgical trauma rats. In experiment one, Sprague-Dawley (SD) male rats were divided into intact, model (10% partial hepatectomy), sham EA and EA group. Rats from the Sham EA and EA group were stimulated at ST36-Zusanli and SP6-Sanyiniiao acupoints twice, 24 hours before the surgery and immediately after the surgery. Expressions of hypothalamic CRF and CRFR, GABA receptors, glutamate decarboxylase (GAD), serum adrenocorticotropic hormone (ACTH) and Corticosterone (CORT) were observed at 2, 4, 8 and 24 h after the surgery by radioimmunoassay (RIA), western blot, real-time PCR and immunohistochemistry. In the experiment two, SD male rats were divided into the intact, model, model + vehicle, model + L-838,417 EA and EA + L838,417 group. It was found that hypothalamus CRF, serum ACTH and CORT levels were increased in model group compared with the intact group, and those in the EA group decreased in comparison with the model group. Compared with the model group, hypothalamus-aminobutyric acid (GABA) receptor Aα3 mRNA and protein expressions of the EA group raised strikingly. In conclusion, EA alleviated surgical stress response by improving the GABA synthesis in hypothalamus, thus enhancing GABA receptors’ inhibitory regulation of the HPA axis dysfunction in rats with acute surgical trauma.展开更多
Objective To investigate the effect of XBXT-2 on the activity of hypothalamic-pituitary-adrenal(HPA)axis in chronic mild stress(CMS)model of rats.Methods Using ELISA to test the serum corticosterone,adrenocorticotropi...Objective To investigate the effect of XBXT-2 on the activity of hypothalamic-pituitary-adrenal(HPA)axis in chronic mild stress(CMS)model of rats.Methods Using ELISA to test the serum corticosterone,adrenocorticotropic hormone(ACTH)and corticotropin-releasing hormone(CRH)level in CMS rats;Using western blot to determine hippocampal glucocorticoids receptors(GR)expression in CMS rats.Results Co-administration of XBXT-2(25,50 mg·kg-1,p.o.,28 days,the effective doses for behavioral responses)significantly decreased the serum corticosterone and ACTH level in CMS rats,while the CRH level was not markedly affected by chronic stress or drugs.Moreover,XBXT-2 significantly increased the GR expression in the hippocampus of CMS rats.The same effects were observed in the positive control drug imipramine(10 mg·kg-1,p.o.).Conclusions The decrease of serum corticosterone and ACTH level,as well as the increase of hippocampal GR expression may be the mechanisms underlying the antidepressant action of XBXT-2,which may associate with HPA axis.展开更多
Stress adaptation is fundamental for health, and the hypothalamic-pituitary-adrenal axis (HPA) is one of its main mechanisms. Considerable data indicate that arginine vasopressin (AVP) related disturbances of stress a...Stress adaptation is fundamental for health, and the hypothalamic-pituitary-adrenal axis (HPA) is one of its main mechanisms. Considerable data indicate that arginine vasopressin (AVP) related disturbances of stress adaptation can occur with aging. However, most studies of such kind have been performed on rodents, give contradictory results and fail to consider individual characteristics of the animals. The purpose of this study was to investigate individual HPA responsiveness to acute stress and its vasopressinergic regulation in old female rhesus monkeys that differ in their behavioral responses to stress. Animals with depression-like or anxiety-like behavior (DAB) responded with higher plasma levels of ACTH and AVP, lower levels of corticosteroids and higher cortisol/DHEAS molar ratios to restraint stress and to insulin-induced hypoglycemia compared with animals with healthy adaptive behavior. AVP and ACTH dynamics were closely correlated in most animals. AVP treatment produced differences in HPA responses similar to those produced by the stressors. The ACTH response to hypoglycemic stress in the DAB animal with highest HPA responsiveness was dramatically reduced by prior administration of a V1b receptor antagonist. These results suggest that the dysfunctions of HPA observed in old animals with DAB are caused by increased tone of the vasopressinergic system in regulation of HPA stress reactivity.展开更多
Objective To study the features of the activity changes of glutamate (GLu ) in the hippocampusand hypothalamus and its effects on the activation of the hypothalamus-pituitary-adrenal axis (HPA ) duringacute cerebral i...Objective To study the features of the activity changes of glutamate (GLu ) in the hippocampusand hypothalamus and its effects on the activation of the hypothalamus-pituitary-adrenal axis (HPA ) duringacute cerebral ischemia (ACI ). Methods: The changes of Glu content, corticotrophin releasing hormone(CRH ) mRNA expression level and adrenocorticotropic hormone (ACTH ) concentration were determinedwith high-performance liquid chromatography (HPLC ) and in situ hybridization in different time intervals after middle cerebral artery occlusion (MCAO) in rats. Results: Glu content was increased rapidly in the hippocampus and hypothalamus 15 min after MCAO and reached the peak (the average Glu content in the hippocarnpus and hypothalamus were 21. 50± 2. 88 mg/g wt and 14. 20±2. 58 mg/g wt respectively) in the lsthour after MCAO and it returned rapidly to the base line level after reperfusion. The Gln content in the hippocampus and hypothalamus went up once more in the 24th hour of reperfusion, remained at a relatively highlevel till the 48th hour of reperfusion and then declined gradually. The expression level of CRH mRNA wasmarkedly enhanced in the temporal cortex, hippocampus and hypothalamus in the lst hour after MCAO andthis condition was kept on till the 96th hour of reperfusion. In the same time, the plasma level of ACTH wasrelatively increased. In the peak stage of reperfusion injury,there was a positive correlation of the Glu contentin the hypothalamus with the number of positive cells of CRH mRNA expression and the plasma level of ACTH. Conclusion: The central CRH system is possible to locate mainly in the limbic system and Gln might beone of the factors to induce excessive excitable stress response of the HPA axis.展开更多
Anxiety disorders are among the most common of all mental disorders and their pathogenesis is a major topic in psychiatry, both for prevention and treatment. Early stressful life events and alterations of hypothalamic...Anxiety disorders are among the most common of all mental disorders and their pathogenesis is a major topic in psychiatry, both for prevention and treatment. Early stressful life events and alterations of hypothalamic pituitary adrenal(HPA) axis function seem to have a significant role in the onset of anxiety. Existing data appear to support the mediating effect of the HPA axis between childhood traumata and posttraumatic stress disorder. Findings on the HPA axis activity at baseline and after stimuli in panic disordered patients are inconclusive, even if stressful life events may have a triggering function in the development of this disorder. Data on the relationship between stress, HPA axis functioning and obsessive-compulsive disorder(OCD) are scarce and discordant, but an increased activity of the HPA axis is reported in OCD patients. Moreover, normal basal cortisol levels and hyperresponsiveness of the adrenal cortex during a psychosocial stressor are observed in social phobics. Finally,abnormal HPA axis activity has also been observed in generalized anxiety disordered patients. While several hypothesis have attempted to explain these findings over time, currently the most widely accepted theory is that early stressful life events may provoke alterations of the stress response and thus of the HPA axis, that can endure during adulthood, predisposing individuals to develop psychopathology. All theories are reviewed and the authors conclude that childhood life events and HPA abnormalities may be specifically and transnosographically related to all anxiety disorders, as well as, more broadly, to all psychiatric disorders.展开更多
Chronic stress-induced depression is a common hallmark of many psychiatric disorders with high morbidity rate.Stress-induced dysregulation of noradrenergic system has been implicated in the pathogenesis of depression....Chronic stress-induced depression is a common hallmark of many psychiatric disorders with high morbidity rate.Stress-induced dysregulation of noradrenergic system has been implicated in the pathogenesis of depression.Lack of monoamine in the brain has been believed to be the main causative factor behind pathophysiology of major depressive disorder(MDD) and several antidepressants functions by increasing the monoamine level at the synapses in the brain.However,it is undetermined whether the noradrenergic receptor stimulation is critical for the therapeutic effect of antidepressant.Contrary to noradrenergic receptor stimulation,it has been suggested that the desensitization of β-adrenoceptor is involved in the therapeutic effect of antidepressant.In addition,enhanced noradrenaline(NA) release is central response to stress and thought to be a risk factor for the development of MDD.Moreover,fast acting antidepressant suppresses the hyperactivation of noradrenergic neurons in locus coeruleus(LC).However,it is unclear how they alter the firing activity of LC neurons.These inconsistent reports about antidepressant effect of NA-reuptake inhibitors(NRIs) and enhanced release of NA as a stress response complicate our understanding about the pathophysiology of MDD.In this review,we will discuss the role of NA in pathophysiology of stress and the mechanism of therapeutic effect of NA in MDD.We will also discuss the possible contributions of each subtype of noradrenergic receptors on LC neurons,hypothalamic-pituitary-adrenal axis(HPA-axis) and brain derived neurotrophic factor-induced hippocampal neurogenesis during stress and therapeutic effect of NRIs in MDD.展开更多
Background: The suppression of the hypothalamic-pituitary-adrenal axis by cortisol-secreting adrenocortical tumors is well recognized and requires peri- and postoperative hydrocortisone substitution. Case Presentation...Background: The suppression of the hypothalamic-pituitary-adrenal axis by cortisol-secreting adrenocortical tumors is well recognized and requires peri- and postoperative hydrocortisone substitution. Case Presentation: A 48-year-old female patient with hypertension and progressive weight gain, the clinical signs of hypercorticism motivated a hormonal workup revealing an independent ACTH Cushing’s syndrome: with urinary free cortisol (UFC) at 649 nmol/24h (4× normal), adrenocorticotropin hormone (ACTH) at 1.5 ng/l. The rest of the hormonal workup was not performed due to a lack of financial means. An Adrenal CT scan showed a 4 cm right adrenal adenoma. The patient underwent a right adrenalectomy with an adrenal adenoma on pathological examination. The contralateral side was normal. The patient was treated with hydrocortisone 30 mg/d for 6 weeks then 15 mg/d, during the monitoring we noted a persistence of the adrenal insufficiency for now 4 years. Basal cortisol levels during follow-up were very low (<3 μg/dl) ruling out the need for synacthen stimulation tests. Conclusion: Adrenal cortisol tumors are recognized by suppression, the duration of hypothalamic-pituitary-adrenal axis suppression is variable from 11 to 60 months depending on the series, which depends on the duration, severity of hypercortisolism, tumor size and other unknown factors. A longer follow-up of these patients is necessary to look for recovery of the contralateral adrenal gland.展开更多
Objective: To investigate whether Epimedium brevicornu Maxim (EB) and icariin could exert their protective effects on hydrocortisone induced (HCI) rats by regulating the hypothalamus-pituitary-adrenal (HPA) axi...Objective: To investigate whether Epimedium brevicornu Maxim (EB) and icariin could exert their protective effects on hydrocortisone induced (HCI) rats by regulating the hypothalamus-pituitary-adrenal (HPA) axis and endocrine system and the possible mechanism. Methods: Male 10-week-old Sprague Dawley (SD) rats were allotted to 6 groups (A-F) with 12 each, group A was injected normal saline (NS) 3 mL/kg.day intraperitoneally, group A and B were given NS 6 mL/kg.day by gastrogavage, group B-F were injected hydrocortisone 15 mg/kg intraperitoneally, group C and D were given EB 8 or 5 g/(kg·day) by gastrogavage, group E and F were given icariin 25 or 50 mg/(kg·day) by gastrogavage. Gene expressions of hypothalamus corticotropin releasing hormone (CRH) and pituitary proopiomelanocortin (POMC) were detected by reverse transcription-polymerase chain reaction (RT-PCR), and protein of pituitary POMC by Western-blot. Results: The serum T4, testosterone, cortisol and POMC mRNA expression were increased after treatment with EB or icariin in HCI rats, the serum CRH and the hypothalamus CRH mRNA expression released from hypothalamus corticotropin decreased compared with group B (P〈0.05).The treatment with only icariin increased serum adrenocorticotropic hormone (ACTH) compared with group B (P〈0.05). Conclusion: EB and icariin might be therapeutically beneficial in the treatment of HCI rats through attuning the HPA axis and endocrine system which was involved in the release of CRH in hypothalamic, and the production of POMC-derived peptide ACTH in anterior pituitary, the secretion of corticosteroids in adrenal cortex.展开更多
Objective To investigate the features of glutamate activity in the limbic system and the effects of glutamate on the activation of the hypothalamus-pituitary-adrenal (HPA) axis throughout both acute cerebral ischemia ...Objective To investigate the features of glutamate activity in the limbic system and the effects of glutamate on the activation of the hypothalamus-pituitary-adrenal (HPA) axis throughout both acute cerebral ischemia and reperfusion. Methods The changes in glutamate content in the nervous cell gap,in corticotrophin releasing hormone (CHR) mRNA expression level in brain tissue,and in adrenocorticotropic hormone in blood plasma at different time-points after middle cerebral artery occlusion (MCAO) in rats were determined respectively with high-performance liquid chomatography (HPLC) and in situ hybridization.Results Glutamate content in the hippocampus and the hypothalamus increased rapidly at ischemia 15 minutes,and reached peak value (the averages were 21.05 mg/g±2.88 mg/g and 14.20 mg/g±2.58 mg/g,respectively) at 1 hour after middle cerebral artery occlusion. During recirculation,it returned rapidly to the baseline level. At 24 hours after reperfusion,it went up once more,and remained at a relative high level until 48 hours after reperfusion,and then declined gradually. CRH mRNA expression levels in the temporal cortex,hippocampus and hypothalamus were enhanced markedly at 1 hour ischemia and were maintained until 96 hours after reperfusion. At the same time,adrenocorticotropic hormone level in plasma was relatively increased. In the peak stage of reperfusion injury,there was a significantly positive correlation (n=15,r =0.566,P <0.05) of the glutamate contents in the hypothalamus with the number of cells positive for CRH mRNA expression level in the hypothalamus.Conclusion It is probable that the CRH system in the central nervous system is mainly distributed in the limbic system,and glutamate might be one of the trigger factors to induce excessive stress response in the HPA axis.展开更多
Background Bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) are both inflammatory airway diseases with different characteristics. However, there are many patients who suffer from both BA and ...Background Bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) are both inflammatory airway diseases with different characteristics. However, there are many patients who suffer from both BA and COPD. This study was to evaluate changes of inflammatory airway features and hypothalamic-pituitary-adrenal (HPA) axis function in asthmatic rats combined with COPD. Methods Brown Norway (BN) rats were used to model These three models were compared and evaluated with the inflammatory airway diseases of BA, COPD and COPD+BA. respect to clinical symptoms, pulmonary histopathology, airway hyperresponsiveness (AHR), inflammatory cytokines and HPA axis function. Results The inflammatory airway features and HPA axis function in rats in the COPD+BA model group were greatly influenced. Rats in this model group showed features of the inflammatory diseases BA and COPD. The expression of inflammatory cytokines in this model group might be up or downregulated when both disease processes are present. The levels of corticotrophin releasing hormone mRNA and corticosterone in this model group were both significantly decreased than those in the control group (P 〈0.05). Conclusions BN rat can be used as an animal model of COPD+BA. By evaluating this animal model we found that the features of inflammation in rats in this model group seem to be exaggerated. The HPA axis functions in rats in this model group have been disturbed or impaired, which is prominent at the hypothalamic level.展开更多
As a traditional concept of Chinese medicine(CM), the theory of "Shen(Kidney) controlling bones" has been gradually proven. And in modern allopathic medicine, the multiple mechanisms of bone growth, development ...As a traditional concept of Chinese medicine(CM), the theory of "Shen(Kidney) controlling bones" has been gradually proven. And in modern allopathic medicine, the multiple mechanisms of bone growth, development and regeneration align with the theory. Shen deficiency as a pathological condition has a negative effect on the skeleton of body, specifically the disorder of bone homeostasis. Present studies indicate that Shen deficiency shares a common disorder characterized by dysfunction of hypothalamic-pituitary-adrenal(HPA) axis. HPA axis may be an important regulator of bone diseases with abnormal homeostasis. Therefore, we posit the existence of hypothalamic-pituitary-adrenal-osteo-related cells axis: cells that comprise bone tissue(osteo-related cells) are targets under the regulation of HPA axis in disorder of bone homeostasis. Chinese herbs for nourishing Shen have potential in the development of treatments for disorder of bone homeostasis.展开更多
Stressful stimuli induced by immobilization are perceived as acute stress in rats. This acute stress activates corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN), resulting...Stressful stimuli induced by immobilization are perceived as acute stress in rats. This acute stress activates corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN), resulting in stimulation of the hypothalamic-pituitary-adrenal (HPA) axis. The ventral ascending noradrenergic bundles (V-NAB) from the brainstem innervate the PVN. To investigate the relationship between the response of the HPA axis and the V-NAB, we examined changes in plasma corticosterone, the final output of the HPA axis, and extracellular noradrenaline (NA) in the PVN following immobilization stress in rats that received bilateral 6-hydroxydopamine (6-OHDA) lesions of the V-NAB. 6-OHDA microinjection into the V-NAB reduced the magnitude of the responses of plasma corticosterone and extracellular NA in the PVN following immobilization stress. Our results suggest that V-NAB innervation of the PVN is involved in immobilization stress-induced activation of the HPA axis.展开更多
基金Project of Sichuan Provincial Traditional Chinese Medicine Administration,No.200674Science Foundation of Southwest Jiaotong University,No.2006A10+1 种基金"Key New Drug Innovation" National Science and Technology Major Projects During Eleventh Five-Year Plan,No.2009ZX09103-370Chengdu Science and Technology Major Projects During Eleventh Five-Year Plan,No.09GGZD060SF-012
文摘BACKGROUND: Hypothalamus-pituitary-adrenal (HPA) axis dysfunction has been closely linked to anxiety. Previous studies have shown that Valeriana jatamansi Jones extract exhibits clear anxiolytic effects, but it is unclear about the mechanism underlying regulation of the HPA axis dysfunction in these anxiolytic effects. OBJECTIVE: To observe the effects of Valeriana jatamansi Jones (Zhizhu Xiang) extract on HPA axis function in a rat model of anxiety, and to compare these effects with positive control estazolam. DESIGN, TIME AND SETTING: Randomized, controlled, animal experiment was performed at Chengdu University of Traditional Chinese Medicine, China, between February and September in 2006. MATERIALS: Estazolam was purchased from Shanghai Jiufu Pharmaceutical, China; Valeriana jatamansiJones was purchased from the Lotus Pond Market for Chinese Herbal Medicine in Chengdu. It consisted of iridoids and flavonoid components. METHODS: A total of 72 Sprague Dawley rats, aged 2 months, were randomly assigned to 6 groups low-, medium-, and high-dose Valerianajatamansi Jones groups intragastrically injected with 0.3, 0.6, and 0.9 g/kg per day Valerianajatamansi Jones extract, respectively; estazolam group intragastrically injected with 1.5 mg/kg per day estazolam; model and normal groups administered 5 mL physiological saline. Anxiety was established in all groups, except the normal group, through the use of elevated plus-maze test at 7 days following drug administration. MAIN OUTCOME MEASURES: Blood β-endorphin and corticosterone levels were determined using enzyme-linked immunosorbent assay following treatment with ValerianajatamansiJones extract. Expressions of HPA axis-related genes were measured by cDNA microarray. RESULTS: Blood β-endorphin and corticosterone levels were significantly greater in the model group than in the normal group. Compared with the model group, levels decreased with Valeriana jatamansi Jones extract or estazolam treatment, particularly in the low-dose Valeriana jatamansi Jones group (P〈 0.01). cDNA microarray results demonstrated that corticotropin-releasing hormone and Orexin, which are associated with HPA axis function, were differentially expressed; expression increased in the model group, but decreased in rats treated with Valerianajatamansi Jones extract. CONCLUSION: Valerianajatamansi Jones extract plays a role in regulating HPA axis function in a rat model of anxiety, and this effect was superior to estazolam.
文摘Hypothalamic Corticotropin-releasing factor (CRF) directly activates the hypothalamic pituitary adrenal axis (HPA axis) during the surgical trauma induced stress response. Electroacupuncture (EA) has been demonstrated to have stress relieving effects in breast surgery, colorectal surgery, prostatectomy and craniotomy. This study was aimed to investigate the hypothesis that EA could regulate hypothalamic CRF in surgical trauma rats. In experiment one, Sprague-Dawley (SD) male rats were divided into intact, model (10% partial hepatectomy), sham EA and EA group. Rats from the Sham EA and EA group were stimulated at ST36-Zusanli and SP6-Sanyiniiao acupoints twice, 24 hours before the surgery and immediately after the surgery. Expressions of hypothalamic CRF and CRFR, GABA receptors, glutamate decarboxylase (GAD), serum adrenocorticotropic hormone (ACTH) and Corticosterone (CORT) were observed at 2, 4, 8 and 24 h after the surgery by radioimmunoassay (RIA), western blot, real-time PCR and immunohistochemistry. In the experiment two, SD male rats were divided into the intact, model, model + vehicle, model + L-838,417 EA and EA + L838,417 group. It was found that hypothalamus CRF, serum ACTH and CORT levels were increased in model group compared with the intact group, and those in the EA group decreased in comparison with the model group. Compared with the model group, hypothalamus-aminobutyric acid (GABA) receptor Aα3 mRNA and protein expressions of the EA group raised strikingly. In conclusion, EA alleviated surgical stress response by improving the GABA synthesis in hypothalamus, thus enhancing GABA receptors’ inhibitory regulation of the HPA axis dysfunction in rats with acute surgical trauma.
文摘Objective To investigate the effect of XBXT-2 on the activity of hypothalamic-pituitary-adrenal(HPA)axis in chronic mild stress(CMS)model of rats.Methods Using ELISA to test the serum corticosterone,adrenocorticotropic hormone(ACTH)and corticotropin-releasing hormone(CRH)level in CMS rats;Using western blot to determine hippocampal glucocorticoids receptors(GR)expression in CMS rats.Results Co-administration of XBXT-2(25,50 mg·kg-1,p.o.,28 days,the effective doses for behavioral responses)significantly decreased the serum corticosterone and ACTH level in CMS rats,while the CRH level was not markedly affected by chronic stress or drugs.Moreover,XBXT-2 significantly increased the GR expression in the hippocampus of CMS rats.The same effects were observed in the positive control drug imipramine(10 mg·kg-1,p.o.).Conclusions The decrease of serum corticosterone and ACTH level,as well as the increase of hippocampal GR expression may be the mechanisms underlying the antidepressant action of XBXT-2,which may associate with HPA axis.
文摘Stress adaptation is fundamental for health, and the hypothalamic-pituitary-adrenal axis (HPA) is one of its main mechanisms. Considerable data indicate that arginine vasopressin (AVP) related disturbances of stress adaptation can occur with aging. However, most studies of such kind have been performed on rodents, give contradictory results and fail to consider individual characteristics of the animals. The purpose of this study was to investigate individual HPA responsiveness to acute stress and its vasopressinergic regulation in old female rhesus monkeys that differ in their behavioral responses to stress. Animals with depression-like or anxiety-like behavior (DAB) responded with higher plasma levels of ACTH and AVP, lower levels of corticosteroids and higher cortisol/DHEAS molar ratios to restraint stress and to insulin-induced hypoglycemia compared with animals with healthy adaptive behavior. AVP and ACTH dynamics were closely correlated in most animals. AVP treatment produced differences in HPA responses similar to those produced by the stressors. The ACTH response to hypoglycemic stress in the DAB animal with highest HPA responsiveness was dramatically reduced by prior administration of a V1b receptor antagonist. These results suggest that the dysfunctions of HPA observed in old animals with DAB are caused by increased tone of the vasopressinergic system in regulation of HPA stress reactivity.
文摘Objective To study the features of the activity changes of glutamate (GLu ) in the hippocampusand hypothalamus and its effects on the activation of the hypothalamus-pituitary-adrenal axis (HPA ) duringacute cerebral ischemia (ACI ). Methods: The changes of Glu content, corticotrophin releasing hormone(CRH ) mRNA expression level and adrenocorticotropic hormone (ACTH ) concentration were determinedwith high-performance liquid chromatography (HPLC ) and in situ hybridization in different time intervals after middle cerebral artery occlusion (MCAO) in rats. Results: Glu content was increased rapidly in the hippocampus and hypothalamus 15 min after MCAO and reached the peak (the average Glu content in the hippocarnpus and hypothalamus were 21. 50± 2. 88 mg/g wt and 14. 20±2. 58 mg/g wt respectively) in the lsthour after MCAO and it returned rapidly to the base line level after reperfusion. The Gln content in the hippocampus and hypothalamus went up once more in the 24th hour of reperfusion, remained at a relatively highlevel till the 48th hour of reperfusion and then declined gradually. The expression level of CRH mRNA wasmarkedly enhanced in the temporal cortex, hippocampus and hypothalamus in the lst hour after MCAO andthis condition was kept on till the 96th hour of reperfusion. In the same time, the plasma level of ACTH wasrelatively increased. In the peak stage of reperfusion injury,there was a positive correlation of the Glu contentin the hypothalamus with the number of positive cells of CRH mRNA expression and the plasma level of ACTH. Conclusion: The central CRH system is possible to locate mainly in the limbic system and Gln might beone of the factors to induce excessive excitable stress response of the HPA axis.
文摘Anxiety disorders are among the most common of all mental disorders and their pathogenesis is a major topic in psychiatry, both for prevention and treatment. Early stressful life events and alterations of hypothalamic pituitary adrenal(HPA) axis function seem to have a significant role in the onset of anxiety. Existing data appear to support the mediating effect of the HPA axis between childhood traumata and posttraumatic stress disorder. Findings on the HPA axis activity at baseline and after stimuli in panic disordered patients are inconclusive, even if stressful life events may have a triggering function in the development of this disorder. Data on the relationship between stress, HPA axis functioning and obsessive-compulsive disorder(OCD) are scarce and discordant, but an increased activity of the HPA axis is reported in OCD patients. Moreover, normal basal cortisol levels and hyperresponsiveness of the adrenal cortex during a psychosocial stressor are observed in social phobics. Finally,abnormal HPA axis activity has also been observed in generalized anxiety disordered patients. While several hypothesis have attempted to explain these findings over time, currently the most widely accepted theory is that early stressful life events may provoke alterations of the stress response and thus of the HPA axis, that can endure during adulthood, predisposing individuals to develop psychopathology. All theories are reviewed and the authors conclude that childhood life events and HPA abnormalities may be specifically and transnosographically related to all anxiety disorders, as well as, more broadly, to all psychiatric disorders.
文摘Chronic stress-induced depression is a common hallmark of many psychiatric disorders with high morbidity rate.Stress-induced dysregulation of noradrenergic system has been implicated in the pathogenesis of depression.Lack of monoamine in the brain has been believed to be the main causative factor behind pathophysiology of major depressive disorder(MDD) and several antidepressants functions by increasing the monoamine level at the synapses in the brain.However,it is undetermined whether the noradrenergic receptor stimulation is critical for the therapeutic effect of antidepressant.Contrary to noradrenergic receptor stimulation,it has been suggested that the desensitization of β-adrenoceptor is involved in the therapeutic effect of antidepressant.In addition,enhanced noradrenaline(NA) release is central response to stress and thought to be a risk factor for the development of MDD.Moreover,fast acting antidepressant suppresses the hyperactivation of noradrenergic neurons in locus coeruleus(LC).However,it is unclear how they alter the firing activity of LC neurons.These inconsistent reports about antidepressant effect of NA-reuptake inhibitors(NRIs) and enhanced release of NA as a stress response complicate our understanding about the pathophysiology of MDD.In this review,we will discuss the role of NA in pathophysiology of stress and the mechanism of therapeutic effect of NA in MDD.We will also discuss the possible contributions of each subtype of noradrenergic receptors on LC neurons,hypothalamic-pituitary-adrenal axis(HPA-axis) and brain derived neurotrophic factor-induced hippocampal neurogenesis during stress and therapeutic effect of NRIs in MDD.
文摘Background: The suppression of the hypothalamic-pituitary-adrenal axis by cortisol-secreting adrenocortical tumors is well recognized and requires peri- and postoperative hydrocortisone substitution. Case Presentation: A 48-year-old female patient with hypertension and progressive weight gain, the clinical signs of hypercorticism motivated a hormonal workup revealing an independent ACTH Cushing’s syndrome: with urinary free cortisol (UFC) at 649 nmol/24h (4× normal), adrenocorticotropin hormone (ACTH) at 1.5 ng/l. The rest of the hormonal workup was not performed due to a lack of financial means. An Adrenal CT scan showed a 4 cm right adrenal adenoma. The patient underwent a right adrenalectomy with an adrenal adenoma on pathological examination. The contralateral side was normal. The patient was treated with hydrocortisone 30 mg/d for 6 weeks then 15 mg/d, during the monitoring we noted a persistence of the adrenal insufficiency for now 4 years. Basal cortisol levels during follow-up were very low (<3 μg/dl) ruling out the need for synacthen stimulation tests. Conclusion: Adrenal cortisol tumors are recognized by suppression, the duration of hypothalamic-pituitary-adrenal axis suppression is variable from 11 to 60 months depending on the series, which depends on the duration, severity of hypercortisolism, tumor size and other unknown factors. A longer follow-up of these patients is necessary to look for recovery of the contralateral adrenal gland.
基金Supported by Shanghai Municipal Education Commission(No.11ZZ110 and 11YZ69)Natural Science Foundation of Shangshai(No.12ZR1431500)
文摘Objective: To investigate whether Epimedium brevicornu Maxim (EB) and icariin could exert their protective effects on hydrocortisone induced (HCI) rats by regulating the hypothalamus-pituitary-adrenal (HPA) axis and endocrine system and the possible mechanism. Methods: Male 10-week-old Sprague Dawley (SD) rats were allotted to 6 groups (A-F) with 12 each, group A was injected normal saline (NS) 3 mL/kg.day intraperitoneally, group A and B were given NS 6 mL/kg.day by gastrogavage, group B-F were injected hydrocortisone 15 mg/kg intraperitoneally, group C and D were given EB 8 or 5 g/(kg·day) by gastrogavage, group E and F were given icariin 25 or 50 mg/(kg·day) by gastrogavage. Gene expressions of hypothalamus corticotropin releasing hormone (CRH) and pituitary proopiomelanocortin (POMC) were detected by reverse transcription-polymerase chain reaction (RT-PCR), and protein of pituitary POMC by Western-blot. Results: The serum T4, testosterone, cortisol and POMC mRNA expression were increased after treatment with EB or icariin in HCI rats, the serum CRH and the hypothalamus CRH mRNA expression released from hypothalamus corticotropin decreased compared with group B (P〈0.05).The treatment with only icariin increased serum adrenocorticotropic hormone (ACTH) compared with group B (P〈0.05). Conclusion: EB and icariin might be therapeutically beneficial in the treatment of HCI rats through attuning the HPA axis and endocrine system which was involved in the release of CRH in hypothalamic, and the production of POMC-derived peptide ACTH in anterior pituitary, the secretion of corticosteroids in adrenal cortex.
文摘Objective To investigate the features of glutamate activity in the limbic system and the effects of glutamate on the activation of the hypothalamus-pituitary-adrenal (HPA) axis throughout both acute cerebral ischemia and reperfusion. Methods The changes in glutamate content in the nervous cell gap,in corticotrophin releasing hormone (CHR) mRNA expression level in brain tissue,and in adrenocorticotropic hormone in blood plasma at different time-points after middle cerebral artery occlusion (MCAO) in rats were determined respectively with high-performance liquid chomatography (HPLC) and in situ hybridization.Results Glutamate content in the hippocampus and the hypothalamus increased rapidly at ischemia 15 minutes,and reached peak value (the averages were 21.05 mg/g±2.88 mg/g and 14.20 mg/g±2.58 mg/g,respectively) at 1 hour after middle cerebral artery occlusion. During recirculation,it returned rapidly to the baseline level. At 24 hours after reperfusion,it went up once more,and remained at a relative high level until 48 hours after reperfusion,and then declined gradually. CRH mRNA expression levels in the temporal cortex,hippocampus and hypothalamus were enhanced markedly at 1 hour ischemia and were maintained until 96 hours after reperfusion. At the same time,adrenocorticotropic hormone level in plasma was relatively increased. In the peak stage of reperfusion injury,there was a significantly positive correlation (n=15,r =0.566,P <0.05) of the glutamate contents in the hypothalamus with the number of cells positive for CRH mRNA expression level in the hypothalamus.Conclusion It is probable that the CRH system in the central nervous system is mainly distributed in the limbic system,and glutamate might be one of the trigger factors to induce excessive stress response in the HPA axis.
文摘Background Bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) are both inflammatory airway diseases with different characteristics. However, there are many patients who suffer from both BA and COPD. This study was to evaluate changes of inflammatory airway features and hypothalamic-pituitary-adrenal (HPA) axis function in asthmatic rats combined with COPD. Methods Brown Norway (BN) rats were used to model These three models were compared and evaluated with the inflammatory airway diseases of BA, COPD and COPD+BA. respect to clinical symptoms, pulmonary histopathology, airway hyperresponsiveness (AHR), inflammatory cytokines and HPA axis function. Results The inflammatory airway features and HPA axis function in rats in the COPD+BA model group were greatly influenced. Rats in this model group showed features of the inflammatory diseases BA and COPD. The expression of inflammatory cytokines in this model group might be up or downregulated when both disease processes are present. The levels of corticotrophin releasing hormone mRNA and corticosterone in this model group were both significantly decreased than those in the control group (P 〈0.05). Conclusions BN rat can be used as an animal model of COPD+BA. By evaluating this animal model we found that the features of inflammation in rats in this model group seem to be exaggerated. The HPA axis functions in rats in this model group have been disturbed or impaired, which is prominent at the hypothalamic level.
基金Supported by the Major Science and Technology Special Project of Zhejiang Province to TONG Pei-jian(No.2014C03035)the Zhejiang Provincial Major Science and Technology Project of Medical and Health of China to TONG Pei-jian(No.201487674)Cultivation Program for Innovative Talent Graduate Students to XU Tao-tao(No.311100G00901)from Zhejiang Chinese Medical University
文摘As a traditional concept of Chinese medicine(CM), the theory of "Shen(Kidney) controlling bones" has been gradually proven. And in modern allopathic medicine, the multiple mechanisms of bone growth, development and regeneration align with the theory. Shen deficiency as a pathological condition has a negative effect on the skeleton of body, specifically the disorder of bone homeostasis. Present studies indicate that Shen deficiency shares a common disorder characterized by dysfunction of hypothalamic-pituitary-adrenal(HPA) axis. HPA axis may be an important regulator of bone diseases with abnormal homeostasis. Therefore, we posit the existence of hypothalamic-pituitary-adrenal-osteo-related cells axis: cells that comprise bone tissue(osteo-related cells) are targets under the regulation of HPA axis in disorder of bone homeostasis. Chinese herbs for nourishing Shen have potential in the development of treatments for disorder of bone homeostasis.
文摘Stressful stimuli induced by immobilization are perceived as acute stress in rats. This acute stress activates corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN), resulting in stimulation of the hypothalamic-pituitary-adrenal (HPA) axis. The ventral ascending noradrenergic bundles (V-NAB) from the brainstem innervate the PVN. To investigate the relationship between the response of the HPA axis and the V-NAB, we examined changes in plasma corticosterone, the final output of the HPA axis, and extracellular noradrenaline (NA) in the PVN following immobilization stress in rats that received bilateral 6-hydroxydopamine (6-OHDA) lesions of the V-NAB. 6-OHDA microinjection into the V-NAB reduced the magnitude of the responses of plasma corticosterone and extracellular NA in the PVN following immobilization stress. Our results suggest that V-NAB innervation of the PVN is involved in immobilization stress-induced activation of the HPA axis.