DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-bu...DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.展开更多
Objective:The aim of this study was to analyze the expression features of hypoxia inducible factor-1α (HIF-1α) in hepatocellular carcinoma (HCC) and effects of HIF-1α silencing on HepG2 cells.Methods:HIF-1α expres...Objective:The aim of this study was to analyze the expression features of hypoxia inducible factor-1α (HIF-1α) in hepatocellular carcinoma (HCC) and effects of HIF-1α silencing on HepG2 cells.Methods:HIF-1α expression was analyzed in the self-control HCC specimens by immunohistochemistry.After HepG2 cells with miRNA transfection,the expression of HIF-1α was determined at mRNA or protein level by real-time polymerase chain reaction (PCR) or Western blotting.Vascular endothelial growth factor (VEGF) and angiopoietin-2 (ANG-2) were determined by ELISA.Alterations of cell cycles and apoptosis of HepG2 cells were measured using a flow cytometer.Results:Positive HIF-1α was brown and granule-like in the cytoplasm or nucleus.Significant difference was found between HCC (80%) and its surrounding tissues (100%,χ2=22.35,P < 0.001) and HIF-1α expression related to tumor size.At 72 h after miRNA transfection,the expression of HIF-1α in HepG2 cells was down-regulated by 87% at mRNA or 65% at protein level,with VEGF and ANG-2 decreased to 54% and 36%,respectively.After RNA interference combined with anti-cancer drug,the apoptotic rate of HepG2 cells was increasing from 22.46% ± 0.61% to 36.99% ± 0.88%,with up-regulation of G1 phase (65.68% ± 0.91%) and down-regulation of S phase (19.47 ± 1.34 %).Conclusion:Abnormal expression of HIF-1α is associated with development of HCC,and HIF-1α gene silencing can effectively inhibit HepG2 cell proliferation.展开更多
AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model...AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand NO[endothelial NO synthase(eNOS)activity and nitrites/nitrates]were also measured.Other factors associated with the higher susceptibility of steatotic livers to IRI,such as mitochondrial damage and vascular resistance were evaluated. RESULTS:A significant increase in HIF-1αwas found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage.Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters.These benefits were enhanced by the addition of trimetazidine(an antiischemic drug),which induces NO and eNOS activation, to IGL-1 solution.In normoxic reperfusion,the presence of NO favors HIF-1αaccumulation,promoting also the activation of other cytoprotective genes,such as hemeoxygenase-1. CONCLUSION:We found evidence for the role of the HIF-1α/NO system in fatty liver preservation,especially when IGL-1 solution is used.展开更多
BACKGROUND:Hepatic hypoxia-inducible factor-1(HIF-1) is activated in the progression of hepatocellular carcinoma (HCC).This study aimed to investigate the dynamic alterations of HIF-1αand its gene expression so as to...BACKGROUND:Hepatic hypoxia-inducible factor-1(HIF-1) is activated in the progression of hepatocellular carcinoma (HCC).This study aimed to investigate the dynamic alterations of HIF-1αand its gene expression so as to explore the relationship between HIF-1αexpression and hepatocarcinogenesis at the early stage of HCC. METHODS:A hepatoma model was made with 2-fluorenyl- acetamide(2-FAA)in male Sprague-Dawley rats.Morphological changes of rat hepatocytes were assessed pathologically (HE staining).The dynamic expression of hepatic and circulating HIF-1αwas quantitatively analyzed by ELISA. The gene fragments of hepatic HIF-1αmRNA were amplified by RT-PCR and confirmed by sequencing.The cellular distribution of hepatic HIF-1αexpression was confirmed by immunohistochemistry. RESULTS:Histological examination confirmed granulelike degeneration to atypical hyperplasia and HCC development in rat hepatocytes and progressive increases in the levels of hepatic and circulating HIF-1αand its gene expression during the course.The levels of HIF-1α expression in the liver and blood of rats with hepatoma were significantly higher than those in normal ratsand those with degeneration.Immunohistochemical analysis confirmed the positive expression and hepatocyte distribution of HIF-1αin the development of rat hepatoma. A positive relationship was found between HIF-1α expression in the liver and blood(P<0.01). CONCLUSIONS:The above observations support the hypothesis that the overexpression of HIF-1αand its gene are closely associated with the malignant transformation of hepatocytes and play an important role at the stage of hepatocarcinogenesis.展开更多
AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lin...AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, m RNA and activity levels of hypoxia inducible factor-1 alpha(HIF-1α), glucose transporter 1, hexokinase-Ⅱ, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting si RNA to assess impact of the high expression of HIF-1α on glycolysis.RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymesand the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions.CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.展开更多
AIM To investigate the relationship between hypoxia-inducible factor-1α(HIF-1α), prolyl 4-hydroxylase beta(P4 HB) expression, and clinicopathologic parameters, as well as the prognostic value of these genes for pati...AIM To investigate the relationship between hypoxia-inducible factor-1α(HIF-1α), prolyl 4-hydroxylase beta(P4 HB) expression, and clinicopathologic parameters, as well as the prognostic value of these genes for patients with gastric cancer(Gc).METHODS Hypoxia is a critical factor that shapes the Gc microenvironment. In previous reports, we have demonstrated that P4 HB is a potential target of HIF-1α. In the present study, gene expression profiling interactive analysis(GEPIA) was used to analyze the relationship between P4 HB and hypoxia-associated genes. To this end, 428 Gc tissue samples were used to analyze the expression of HIF-1α and P4 HB via immunohistochemical staining. Patient samples were classified as having weak-expression or over-expression both in terms of HIF-1α and P4 HB. Correlations between biomarkers and clinicopathological factors were analyzed to predict survival. RESULTS P4 HB demonstrated a positive correlation with hypoxiaassociated genes(P < 0.05). HIF-1α and P4 HB overexpression have a significant correlation with TNM staging(χ2 = 23.32, P = 0.00; χ2 = 65.64, P = 0.00) and peritoneum cavity metastasis(χ2 = 12.67, P = 0.00; χ2 = 39.29, P = 0.00). In univariate analysis, patients with a high HIF-1α expression trend had a shorter disease-free survival(DFS: 44.80 mo vs 22.06 mo) and overall survival(OS: 49.58 mo vs 39.92 mo). P4 HB overexpression reflected similar results: patients with over-expression of P4 HB had a shorter survival time than those with weak-expression(DFS: 48.03 mo vs 29.64 mo, OS: 52.48 mo vs 36.87 mo). Furthermore, HIF-1α is also a clinicopathological predictor of dismal prognosis according to multivariate analysis(DFS, 95%c I: 0.52-0.88, P < 0.00; OS, 95%c I: 0.50-0.85, P < 0.00). However, P4 HB was meaningful in DFS(95%c I: 0.58-1.00, P < 0.05) but not in OS(95%c I: 0.72-1.23, P > 0.05).CONCLUSION Overexpression of HIF-1α and P4 HB is associated with poor prognosis in patients with Gc. Thus, these genes may be potential prognostic biomarker candidates in GC.展开更多
Mild traumatic brain injury(TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with ne...Mild traumatic brain injury(TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide(NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha(HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione(GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.展开更多
文摘DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.
基金Supported by grants from Jiang su Health Key Project(No.K201102)Nantong City Social Development Project (No. S2009027)
文摘Objective:The aim of this study was to analyze the expression features of hypoxia inducible factor-1α (HIF-1α) in hepatocellular carcinoma (HCC) and effects of HIF-1α silencing on HepG2 cells.Methods:HIF-1α expression was analyzed in the self-control HCC specimens by immunohistochemistry.After HepG2 cells with miRNA transfection,the expression of HIF-1α was determined at mRNA or protein level by real-time polymerase chain reaction (PCR) or Western blotting.Vascular endothelial growth factor (VEGF) and angiopoietin-2 (ANG-2) were determined by ELISA.Alterations of cell cycles and apoptosis of HepG2 cells were measured using a flow cytometer.Results:Positive HIF-1α was brown and granule-like in the cytoplasm or nucleus.Significant difference was found between HCC (80%) and its surrounding tissues (100%,χ2=22.35,P < 0.001) and HIF-1α expression related to tumor size.At 72 h after miRNA transfection,the expression of HIF-1α in HepG2 cells was down-regulated by 87% at mRNA or 65% at protein level,with VEGF and ANG-2 decreased to 54% and 36%,respectively.After RNA interference combined with anti-cancer drug,the apoptotic rate of HepG2 cells was increasing from 22.46% ± 0.61% to 36.99% ± 0.88%,with up-regulation of G1 phase (65.68% ± 0.91%) and down-regulation of S phase (19.47 ± 1.34 %).Conclusion:Abnormal expression of HIF-1α is associated with development of HCC,and HIF-1α gene silencing can effectively inhibit HepG2 cell proliferation.
基金Supported by The Ministerio de de Sanidad y Consumo(PI081988)CIBER-EHD,Instituto Carlos Ⅲ,Madrid and Ministerio de Asuntos Exteriores y de Cooperación Internacionales(A/020255/08 and A/02987/09),Madrid
文摘AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand NO[endothelial NO synthase(eNOS)activity and nitrites/nitrates]were also measured.Other factors associated with the higher susceptibility of steatotic livers to IRI,such as mitochondrial damage and vascular resistance were evaluated. RESULTS:A significant increase in HIF-1αwas found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage.Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters.These benefits were enhanced by the addition of trimetazidine(an antiischemic drug),which induces NO and eNOS activation, to IGL-1 solution.In normoxic reperfusion,the presence of NO favors HIF-1αaccumulation,promoting also the activation of other cytoprotective genes,such as hemeoxygenase-1. CONCLUSION:We found evidence for the role of the HIF-1α/NO system in fatty liver preservation,especially when IGL-1 solution is used.
基金supported by grants-in-aid from the 333 Project(No.2007099)Project of the Health Department,Jiangsu Province,China(H200523)
文摘BACKGROUND:Hepatic hypoxia-inducible factor-1(HIF-1) is activated in the progression of hepatocellular carcinoma (HCC).This study aimed to investigate the dynamic alterations of HIF-1αand its gene expression so as to explore the relationship between HIF-1αexpression and hepatocarcinogenesis at the early stage of HCC. METHODS:A hepatoma model was made with 2-fluorenyl- acetamide(2-FAA)in male Sprague-Dawley rats.Morphological changes of rat hepatocytes were assessed pathologically (HE staining).The dynamic expression of hepatic and circulating HIF-1αwas quantitatively analyzed by ELISA. The gene fragments of hepatic HIF-1αmRNA were amplified by RT-PCR and confirmed by sequencing.The cellular distribution of hepatic HIF-1αexpression was confirmed by immunohistochemistry. RESULTS:Histological examination confirmed granulelike degeneration to atypical hyperplasia and HCC development in rat hepatocytes and progressive increases in the levels of hepatic and circulating HIF-1αand its gene expression during the course.The levels of HIF-1α expression in the liver and blood of rats with hepatoma were significantly higher than those in normal ratsand those with degeneration.Immunohistochemical analysis confirmed the positive expression and hepatocyte distribution of HIF-1αin the development of rat hepatoma. A positive relationship was found between HIF-1α expression in the liver and blood(P<0.01). CONCLUSIONS:The above observations support the hypothesis that the overexpression of HIF-1αand its gene are closely associated with the malignant transformation of hepatocytes and play an important role at the stage of hepatocarcinogenesis.
基金Supported by the National Natural Science Foundation of China,No.30800511
文摘AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, m RNA and activity levels of hypoxia inducible factor-1 alpha(HIF-1α), glucose transporter 1, hexokinase-Ⅱ, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting si RNA to assess impact of the high expression of HIF-1α on glycolysis.RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymesand the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions.CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.
基金Supported by Liaoning S and T Project,No.2015020269Doctor fund of Liaoning Province Cancer Hospital and Institute,No.Z1410
文摘AIM To investigate the relationship between hypoxia-inducible factor-1α(HIF-1α), prolyl 4-hydroxylase beta(P4 HB) expression, and clinicopathologic parameters, as well as the prognostic value of these genes for patients with gastric cancer(Gc).METHODS Hypoxia is a critical factor that shapes the Gc microenvironment. In previous reports, we have demonstrated that P4 HB is a potential target of HIF-1α. In the present study, gene expression profiling interactive analysis(GEPIA) was used to analyze the relationship between P4 HB and hypoxia-associated genes. To this end, 428 Gc tissue samples were used to analyze the expression of HIF-1α and P4 HB via immunohistochemical staining. Patient samples were classified as having weak-expression or over-expression both in terms of HIF-1α and P4 HB. Correlations between biomarkers and clinicopathological factors were analyzed to predict survival. RESULTS P4 HB demonstrated a positive correlation with hypoxiaassociated genes(P < 0.05). HIF-1α and P4 HB overexpression have a significant correlation with TNM staging(χ2 = 23.32, P = 0.00; χ2 = 65.64, P = 0.00) and peritoneum cavity metastasis(χ2 = 12.67, P = 0.00; χ2 = 39.29, P = 0.00). In univariate analysis, patients with a high HIF-1α expression trend had a shorter disease-free survival(DFS: 44.80 mo vs 22.06 mo) and overall survival(OS: 49.58 mo vs 39.92 mo). P4 HB overexpression reflected similar results: patients with over-expression of P4 HB had a shorter survival time than those with weak-expression(DFS: 48.03 mo vs 29.64 mo, OS: 52.48 mo vs 36.87 mo). Furthermore, HIF-1α is also a clinicopathological predictor of dismal prognosis according to multivariate analysis(DFS, 95%c I: 0.52-0.88, P < 0.00; OS, 95%c I: 0.50-0.85, P < 0.00). However, P4 HB was meaningful in DFS(95%c I: 0.58-1.00, P < 0.05) but not in OS(95%c I: 0.72-1.23, P > 0.05).CONCLUSION Overexpression of HIF-1α and P4 HB is associated with poor prognosis in patients with Gc. Thus, these genes may be potential prognostic biomarker candidates in GC.
基金supported by grants from VA merit awards(BX3401 and RX2090)
文摘Mild traumatic brain injury(TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide(NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha(HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione(GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.