期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury 被引量:1
1
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2S hypoxic ischemic brain injury inflammation L-CYSTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury 被引量:15
2
作者 Hui Guo Hui Zhou +3 位作者 Jie Lu Yi Qu Dan Yu Yu Tong 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期174-179,共6页
Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain inj... Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions. 展开更多
关键词 nerve regeneration VEGF VEGFR HIF1 PI3K/Akt pathway Akt/e NOS pathway JAK/STAT Src-SSe CKS pathway hypoxic/ischemic brain injury neural regeneration
下载PDF
Interventional effect of laser acupoint radiation on the expression of Nissl body and brain-derived neurotrophic factor in newborn rat models with ischemic/hypoxic cerebral injury
3
作者 Shengwang Hu Pixin Nong +1 位作者 Yong Hu Zhijie Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第12期713-716,共4页
BACKGROUND: Some researches report that He-Ne laser can activate function of erythrocytes and increase content of blood and oxygen via bio-stimulating effect; therefore, it suspects that laser radiation at Baihui and... BACKGROUND: Some researches report that He-Ne laser can activate function of erythrocytes and increase content of blood and oxygen via bio-stimulating effect; therefore, it suspects that laser radiation at Baihui and Dazhui can partially increase blood circulation for oxygen-supplying content of brain and improve functional status of neurons. OBJECTIVE: To verify the effects of laser radiation at Baihui and Dazhui on the expression of Nissl body of brain tissue neurons and brain-derived neurotrophic factor (BDNF) in newborn rats with ischemic/hypoxic cerebral injury. DESIGN: Randomized controlled animal study. SETTING: Department of Neurological Histochemistry, Xianning University. MATERIALS: Forty Wistar rats of 7 - 8 days old, weighing 15 - 20 g and of both genders, were selected from Wuhan Experimental Animal Center. All the rats were randomly divided into sham operation group (n =8), model group (n =16) and radiation group (n = 16). The experimental animals were disposed according to ethical criteria. BDNF kit was provided by Wuhan Boster Bioengineering Co., Ltd. METHODS: The experiment was carried out in the Department of Neurological Histochemistry, Xianning University from April 2005 to October 2006. Rats in the radiation group and model group were performed with ligation of left common carotid artery, recovered at room temperature for 1 - 6 days, maintained in self-made hypoxic cabin under normal pressure and injected mixture gas (0.05 volume fraction of 02 and 0.92 volume fraction of N2) for 2 hours. In addition, rats in the sham operation group were treated with separation of left common carotid artery but not ligation and hypoxia. Rats in the model group were not given any treatment; while, rats in the radiation group were exposed with He-Ne laser of 63.28 nm in the wave length at Baihui and Dazhui acupoints on the second day after ischemia-hypoxia. The radiation was given for 10 minutes per day and once a day. Ten days were regarded as a course and the rats were exposed for 2 courses in total. At 20 days after routine breeding, left hemisphere tissues of rats in the three groups were collected for staining of Nissl body and immunohistochemistry of BDNF. MAIN OUTCOME MEASURES: Nissl body staining in left hemisphere tissue and expression of immune positive cells of BDNF. RESULTS: All 40 rats were involved in the final analysis. (1) Nissl body staining: Neuronal cytoplasm of brain tissue was full of blue granule Nissl bodies in the sham operation group; while, Nissl body in neuronal cytoplasm in the model group was stained slightly and had a certain degree of degeneration; meanwhile, there were a lot of blank area in ischemic region. Nissl body in neuron cytoplasm was gradually recovered in the radiation group and relieved as compared with that in the model group. (2) Positive cells of BDNF: Number of immune positive cells of BDNF which were ligated in lateral cerebral hemisphere of rats in the model group was higher than that in the sham operation group (P 〈 0.05); while, BDNF expression in the radiation group was increased as compared with that in the model group (P 〈 0.05). CONCLUSION: After laser acupoint radiation, Nissl body is increased and BDNF expression is also increased. This suggests that laser acupoint radiation has neuroprotective effect on brain tissue after ischemia-hypoxia injury. 展开更多
关键词 LASER newborn rats ischemic/hypoxic cerebral injury brain-derived neurotrophic factor
下载PDF
Exploring the mechanism of neuronal apoptosis and brain developmental damage in the hippocampus of hypoxicischemic neonatal rats based on BDNF/TrkB/CREB pathway
4
作者 LU Tian-tian ZHANG Yao +3 位作者 LIANG Bin LIU Min CHEN Xiu-ling Jia Yan-ping 《Journal of Hainan Medical University》 2022年第18期7-12,共6页
Objective:Based on the BDNF/TrkB/CREB pathway,to explore the mechanism of neuronal apoptosis and brain developmental injury in the hippocampus of hypoxic-ischemic neonatal rats.Methods:Wistar young rats were ligated o... Objective:Based on the BDNF/TrkB/CREB pathway,to explore the mechanism of neuronal apoptosis and brain developmental injury in the hippocampus of hypoxic-ischemic neonatal rats.Methods:Wistar young rats were ligated on one side of the common carotid artery and placed in an 8%oxygen and 92%nitrogen hypoxia box for 2 h to prepare hypoxic-ischemic brain injury models.Healthy rats were used as the control group.Control group and model group were selected,with 10 rats in each group,and the learning and memory ability was tested by Y-maze;2,3,5-triphenyltetrazolium chloride(TTC)staining was used to detect brain tissue damage;Western blot was performed to determine the expression of brain-derived neurotrophic factor(BDNF),tyrosine protein kinase B(TrKB)and cAMP-response element binding protein(CREB)in hippocampal tissue.Another 15 mice in the control group and 60 mice in the model group were divided into negative control group(NC),BDNF overexpression group(LV-BDNF),TrkB overexpression group(LV-TrkB),and CREB overexpression group(LV-CREB),blank vector,BDNF,TrkB,CREB adenovirus overexpression vector was injected into the tail vein.Y-maze test for learning and memory ability;TTC staining method to detect brain tissue damage;neuronal apoptosis in the hippocampus were detected by terminal-deoxynucleoitidyl transferase mediated nick end labeling;Western blot to detect the level of neuronal apoptosis in the hippocampus.Apoptosis-related protein B-cell lymphoma-2(Bcl-2),BCL2associated X protein(Bcl-2 Assaciated X,Bax)and nuclear factor kappaB(NFκB)expression.Results:The learning and memory ability of the young mice in the model group was significantly reduced,the brain infarct volume was significantly increased,the expressions of BDNF and TrkB proteins in the hippocampus were significantly increased,and the expression of CREB proteins was significantly decreased;After overexpression of BDNF and TrkB CREB,in the LVBDNF,LVTrkB,and LVCREB group,the learning and memory ability of young mice were significantly improved,the brain infarct volume were significantly reduced,the hippocampal neuronal apoptosis were significantly reduced,The protein expression of Bax and NFκB were significantly decreased and the protein expression of Bcl2 were significantly enhanced.Conclusion:The expression of BDNF/TrkB/CREB is abnormal in HIBI model young mice.Overexpression of BDNF/TrkB/CREB can improve the learning and memory ability of young mice,repair brain tissue damage,and inhibit neuronal apoptosis.Therefore,the mechanism of HIBI may be related to BDNF/TrkB/CREB pathways. 展开更多
关键词 hypoxicischemic brain injury Neuronal apoptosis BDNF TRKB CREB
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部