期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis of Health-Associated Phytochemical Compounds in Seven <i>Hypoxis</i>Species
1
作者 Busie E. Nsibande Karl-Eric Gustavsson Li-Hua Zhu 《American Journal of Plant Sciences》 2018年第4期571-583,共13页
Some species of the genus Hypoxis within the Hypoxidaceae family are known to contain phenolic glycosides that have different clinical functions. In the African continent Hypoxis species are regarded as valuable medic... Some species of the genus Hypoxis within the Hypoxidaceae family are known to contain phenolic glycosides that have different clinical functions. In the African continent Hypoxis species are regarded as valuable medicinal plants that have been used for decades by traditionalists and natives to treat numerous ailments. The corms and rhizomes of the geophytes contain hypoxoside, a norlignan diglucoside, which is one of the important phytochemicals with medicinal functions found in Hypoxis. In this study corm extracts of seven species: H. acuminata, H. argentea, H. filiformis, H. gerrardii, H. hemerocallidea, H. iridifolia and H. parvifolia were analyzed for the presence of ellagic acid, total phenolic content (TPC) and hypoxoside. Extracts of H. iridifolia and H. gerardii had the highest levels of total phenolic content of 369.6 μg/g and 318.2 μg/g, respectively, compared to the rest of the species. Hypoxoside was found to be present in corm extracts of all the species in varying proportions. H. gerrardii, H. argentea and H. filiformis had the highest relative hypoxoside content of 7.1%, 6.6% and 6.6%, respectively. It is interesting to note that Hypoxis hemerocallidea, the most commonly used species for medicinal extracts contained a much lower level of hypoxoside than most of the other species. Our study included species that have not been previously analyzed for either TPC or hypoxoside presence such as H. filiformis and H. gerrardii, thus providing novel information regarding the medicinal status and biochemical compounds of these Hypoxis species. 展开更多
关键词 hypoxis Hypoxoside MEDICINAL Plants Total PHENOLIC Content
下载PDF
A Dual-radiolabel Marker Quantifies Decrease in HT29 Xenograft Hypoxia Induced by Mild Temperature Hyperthermia
2
作者 Mutian Zhang Xiao-Feng Li +7 位作者 Makiko Suehiro Zhihong Zhao David Gagne John Pizzonia Zhigang Zhang Gloria Li C. Clifton Ling John L. Humm 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2012年第2期32-39,共8页
Purpose: In this project, we developed novel methods to quantify changes in tumor hypoxia following a mild tempera-ture hyperthermia (MTH) treatment in rat HT29 human colon adenocarcinoma xenograft. Materials and Meth... Purpose: In this project, we developed novel methods to quantify changes in tumor hypoxia following a mild tempera-ture hyperthermia (MTH) treatment in rat HT29 human colon adenocarcinoma xenograft. Materials and Methods: An exogenous hypoxia marker (IAZGP) was labeled with two radioisotopes of iodine (131I and 123I, respectively) to form two distinct tracers. The two tracers were injected into HT29-bearing nude rats 4-hour before and immediately following 41.5℃, 45-minute mild hyperthermia treatment. The distributions of the two hypoxia tracers were obtained by performing digital autoradiography on tumor sections, and image processing resulted in quantitative information at 50 μm pixel size. Results: Following the hyperthermia treatment, there was a remarkable decrease in hypoxia tracer binding. The average whole tumor hypoxia tracer targeted fraction in five animals changed from 30.3% ± 9.7% to 13.0% ± 5.3% after the hyperthermia treatment (P = 0.001). Detailed pixelby-pixel analysis of the image data revealed a decline in hypoxia tracer uptake after hyperthermia in most regions. However, there was concomitant emergence of some new regions of hypoxia identified by increased tracer uptake. In the control group, the overall hypoxia tracer targeted fraction remained almost constant, with some hypoxic tracer redistribution (putative acute hypoxia) observed. Conclusion: Reoxygenation occurred in the rat HT29 xenograft following MTH treatment. This was evident with preponderance of decreased hypoxia specific tracer uptake on tumor sections. Our methodology might be a useful tool in hypoxia study. 展开更多
关键词 Digital AUTORADIOGRAPHY IAZGP Imaging Plate MILD TEMPERATURE HYPERTHERMIA Tumor Hypoxi
下载PDF
Nitric oxide regulation of plant metabolism 被引量:3
3
作者 Kapuganti Jagadis Gupta Vemula Chandra Kaladhar +3 位作者 Teresa B.Fitzpatrick Alisdair R.Fernie Ian Max Møller Gary J.Loake 《Molecular Plant》 SCIE CAS CSCD 2022年第2期228-242,共15页
Nitric oxide(NO)has emerged as an important signal molecule in plants,having myriad roles in plant devel-opment.In addition,NO also orchestrates both biotic and abiotic stress responses,during which intensive cellular... Nitric oxide(NO)has emerged as an important signal molecule in plants,having myriad roles in plant devel-opment.In addition,NO also orchestrates both biotic and abiotic stress responses,during which intensive cellular metabolic reprogramming occurs.Integral to these responses is the location of NO biosynthetic and scavenging pathways in diverse cellular compartments,enabling plants to effectively organize signal transduction pathways.NO regulates plant metabolism and,in turn,metabolic pathways reciprocally regu-late NO accumulation and function.Thus,these diverse cellular processes are inextricably linked.This re-view addresses the numerous redox pathways,located in the various subcellular compartments that pro-duce NO,in addition to the mechanisms underpinning NO scavenging.We focus on how this molecular dance is integrated into the metabolic state of the cell.Within this context,a reciprocal relationship be-tween NO accumulation and metabolite production is often apparent.We also showcase cellular pathways,including those associated with nitrate reduction,that provide evidence for this integration of NO function and metabolism.Finally,we discuss the potential importance of the biochemical reactions governing NO levels in determining plant responses to a changing environment. 展开更多
关键词 hypoxi amitochondria METABOLISM NITRIC OXIDE S-NITROSYLATION PYRIDOXINE reactive nitrogen species reactive oxygen species
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部