Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p...Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.展开更多
As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initiall...As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.展开更多
A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positio...A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positions, and the calculation of the prior probability distribution of each beam position is discussed. And then, two search algorithms based on information gain are proposed using Shannon entropy and Kullback-Leibler entropy, respectively. With the proposed strategy, the information gain of each beam position is predicted before the radar detection, and the observation is made in the beam position with the maximal information gain. Compared with the conventional method of sequential search and confirm search, simulation results show that the proposed search strategy can distinctly improve the search performance and save radar time resources with the same given detection probability.展开更多
Feature selection has been widely used in data mining and machine learning.Its objective is to select a minimal subset of features according to some reasonable criteria so as to solve the original task more quickly.In...Feature selection has been widely used in data mining and machine learning.Its objective is to select a minimal subset of features according to some reasonable criteria so as to solve the original task more quickly.In this article,a feature selection algorithm with local search strategy based on the forest optimization algorithm,namely FSLSFOA,is proposed.The novel local search strategy in local seeding process guarantees the quality of the feature subset in the forest.Next,the fitness function is improved,which not only considers the classification accuracy,but also considers the size of the feature subset.To avoid falling into local optimum,a novel global seeding method is attempted,which selects trees on the bottom of candidate set and gives the algorithm more diversities.Finally,FSLSFOA is compared with four feature selection methods to verify its effectiveness.Most of the results are superior to these comparative methods.展开更多
In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then use...In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then uses half-way-skip and half-way-stop technique to determine whether to employ two hexagonal search patterns(HSPs) subsequently. The AMCSP can be used to find small motion vectors efficiently while the HSPs can be used to find large ones accurately to ensure prediction quality. Simulation results showed that our proposed AMCHS achieves faster search speed,and provides better distortion performance than other popular fast search algorithms,such as CDS and CDHS.展开更多
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated...With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.展开更多
The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter stra...The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.展开更多
Test points selection for integer-coded fault wise table is a discrete optimization problem. The global minimum set of test points can only be guaranteed by an exhaustive search which is eompurationally expensive. In ...Test points selection for integer-coded fault wise table is a discrete optimization problem. The global minimum set of test points can only be guaranteed by an exhaustive search which is eompurationally expensive. In this paper, this problem is formulated as a heuristic depth-first graph search problem at first. The graph node expanding method and rules are given. Then, rollout strategies are applied, which can be combined with the heuristic graph search algorithms, in a computationally more efficient manner than the optimal strategies, to obtain solutions superior to those using the greedy heuristic algorithms. The proposed rollout-based test points selection algorithm is illustrated and tested using an analog circuit and a set of simulated integer-coded fault wise tables. Computa- tional results are shown, which suggest that the rollout strategy policies are significantly better than other strategies.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
This paper proposes an enhanced arithmetic optimization algorithm(AOA)called PSAOA that incorporates the proposed probabilistic search strategy to increase the searching quality of the original AOA.Furthermore,an adju...This paper proposes an enhanced arithmetic optimization algorithm(AOA)called PSAOA that incorporates the proposed probabilistic search strategy to increase the searching quality of the original AOA.Furthermore,an adjustable parameter is also developed to balance the exploration and exploitation operations.In addition,a jump mechanism is included in the PSAOAto assist individuals in jumping out of local optima.Using 29 classical benchmark functions,the proposed PSAOA is extensively tested.Compared to the AOA and other well-known methods,the experiments demonstrated that the proposed PSAOA beats existing comparison algorithms on the majority of the test functions.展开更多
A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while sea...A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while search procedure get trapped at local optima and carry the search to areas of the feasible set with better prospect. New strategies used for breaking out of entrapments are presented and they are helpful for the procedure to improve local optima. A performance comparison of the proposed method with some best-performing algorithms on all 10-job, 10-machine benchmark problems and the other two problems generated by Fisher and Thompson (ie., FT6 and FT20)is made. The experiment results show the better optimal performance of the proposed algorithm.展开更多
In this paper, we propose a new method based on index to realize IR-style Chinese keyword search with ranking strategies in relational databases. This method creates an index by using the related information of tuple ...In this paper, we propose a new method based on index to realize IR-style Chinese keyword search with ranking strategies in relational databases. This method creates an index by using the related information of tuple words and presents a ranking strategy in terms of the nature of Chinese words. For a Chinese keyword query, the index is used to match query search words and the tuple words in index quickly, and to compute similarities between the query and tuples by the ranking strategy, and then the set of identifiers of candidate tuples is generated. Thus, we retrieve top-N results of the query using SQL selection statements and output the ranked answers according to the similarities. The experimental results show that our method is efficient and effective.展开更多
The author studies the markers of searching for a word in spontaneous oral speech of Russian-speaking elderly women. The paper puts a question about age-related features of searching strategies of elderly people. Wh...The author studies the markers of searching for a word in spontaneous oral speech of Russian-speaking elderly women. The paper puts a question about age-related features of searching strategies of elderly people. While searching the informants, as a rule, recollect the only word (a noun, including their own name), they do not choose the most suitable nominations from the available options. They often refuse to search and realize an alternative speech strategy.展开更多
In this paper, we investigate the elastic wave full-waveform inversion (FWI) based on the trust region method. The FWI is an optimization problem of minimizing the misfit between the observed data and simulated data. ...In this paper, we investigate the elastic wave full-waveform inversion (FWI) based on the trust region method. The FWI is an optimization problem of minimizing the misfit between the observed data and simulated data. Usually</span><span style="font-family:"">,</span><span style="font-family:""> the line search method is used to update the model parameters iteratively. The line search method generates a search direction first and then finds a suitable step length along the direction. In the trust region method, it defines a trial step length within a certain neighborhood of the current iterate point and then solves a trust region subproblem. The theoretical methods for the trust region FWI with the Newton type method are described. The algorithms for the truncated Newton method with the line search strategy and for the Gauss-Newton method with the trust region strategy are presented. Numerical computations of FWI for the Marmousi model by the L-BFGS method, the Gauss-Newton method and the truncated Newton method are completed. The comparisons between the line search strategy and the trust region strategy are given and show that the trust region method is more efficient than the line search method and both the Gauss-Newton and truncated Newton methods are more accurate than the L-BFGS method.展开更多
COVID-19 is a devastating pandemic with widespread negative health,social,and economic consequences.Due to drastic changes in the business environment of tour and travel agencies,firms and marketing managers can now u...COVID-19 is a devastating pandemic with widespread negative health,social,and economic consequences.Due to drastic changes in the business environment of tour and travel agencies,firms and marketing managers can now use search engine optimization to effectively position themselves.The study’s main goal is to evaluate the effect of search engine optimization on the market performance of registered tours and travel agencies in Nairobi County,Kenya.Kenya’s tourism ministry and state government work hard to improve the business climate for tour and travel companies.Despite the overall positive image,international tourist market growth rates in Kenya have been 3.5 percent slower from 2017 to 2019 compared to previous years.This was further aggregated by the onset of the COVID-19 pandemic in the year 2020,when the growth rate of tours and travel agencies fell by 65%.The study’s main goal is to evaluate the effect of search engine optimization on the market performance of registered tours and travel agencies in Nairobi County,Kenya.This study adopted a positivist philosophy.Both descriptive and explanatory research designs were used.A self-administered semi-structured questionnaire was used to collect data from 324 registered tours and travels agencies picked from and a sample of 179 were used.Data analysis included the development and interpretation of both descriptive and inferential statistics,such as frequencies,mean,percentages,and standard deviation,and was presented using tables and numerical values.The results of regression analysis established that search engine optimization had a positive and significant effect on market performance of the registered tours and travel agencies picked from a sample of 179.The study recommends that agency management ensure that the firm’s website is easily accessible in order to improve agency performance.Using the internet to gain a large market share can assist tours and travel agencies in improving the performance and income of their websites.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51575528)the Science Foundation of China University of Petroleum,Beijing(No.2462022QEDX011).
文摘Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.
基金supported by the National Natural Science Foundation of China(No.72071202)the Key Laboratory of Mathematics and Engineering Applications,Ministry of Education。
文摘As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.
基金the High Technology Research and Development Programme of China (2003AA134030)
文摘A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positions, and the calculation of the prior probability distribution of each beam position is discussed. And then, two search algorithms based on information gain are proposed using Shannon entropy and Kullback-Leibler entropy, respectively. With the proposed strategy, the information gain of each beam position is predicted before the radar detection, and the observation is made in the beam position with the maximal information gain. Compared with the conventional method of sequential search and confirm search, simulation results show that the proposed search strategy can distinctly improve the search performance and save radar time resources with the same given detection probability.
基金National Science Foundation of China(Nos.U1736105,61572259,41942017)The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no.RGP-VPP-264.
文摘Feature selection has been widely used in data mining and machine learning.Its objective is to select a minimal subset of features according to some reasonable criteria so as to solve the original task more quickly.In this article,a feature selection algorithm with local search strategy based on the forest optimization algorithm,namely FSLSFOA,is proposed.The novel local search strategy in local seeding process guarantees the quality of the feature subset in the forest.Next,the fitness function is improved,which not only considers the classification accuracy,but also considers the size of the feature subset.To avoid falling into local optimum,a novel global seeding method is attempted,which selects trees on the bottom of candidate set and gives the algorithm more diversities.Finally,FSLSFOA is compared with four feature selection methods to verify its effectiveness.Most of the results are superior to these comparative methods.
文摘In this paper,we propose a novel adjustable multiple cross-hexagonal search(AMCHS) algorithm for fast block motion estimation. It employs adjustable multiple cross search patterns(AMCSP) in the first step and then uses half-way-skip and half-way-stop technique to determine whether to employ two hexagonal search patterns(HSPs) subsequently. The AMCSP can be used to find small motion vectors efficiently while the HSPs can be used to find large ones accurately to ensure prediction quality. Simulation results showed that our proposed AMCHS achieves faster search speed,and provides better distortion performance than other popular fast search algorithms,such as CDS and CDHS.
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62071431, 62072490 and 62301490in part by Science and Technology Development Fund of Macao SAR, China under Grant 0158/2022/A+2 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287)in part by MYRG202000107-IOTSCin part by FDCT SKL-IOTSC (UM)-2021-2023
文摘With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.
基金funded by the NationalKey Research and Development Program of China under Grant No.11974373.
文摘The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.
基金supported by Commission of Science Technology and Industry for National Defence of China under Grant No.A1420061264National Natural Science Foundation of China under Grant No.60934002General Armament Department under Grand No.51317040102)
文摘Test points selection for integer-coded fault wise table is a discrete optimization problem. The global minimum set of test points can only be guaranteed by an exhaustive search which is eompurationally expensive. In this paper, this problem is formulated as a heuristic depth-first graph search problem at first. The graph node expanding method and rules are given. Then, rollout strategies are applied, which can be combined with the heuristic graph search algorithms, in a computationally more efficient manner than the optimal strategies, to obtain solutions superior to those using the greedy heuristic algorithms. The proposed rollout-based test points selection algorithm is illustrated and tested using an analog circuit and a set of simulated integer-coded fault wise tables. Computa- tional results are shown, which suggest that the rollout strategy policies are significantly better than other strategies.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
基金partially supported by the Fundamental Research Funds for the Central Universities(WUT:2022IVA067)the National Natural Science Foundation of China(Grant No.:72172112)the Fundamental Research Funds for the Central Universities(HUST:2019kfyRCPY038).
文摘This paper proposes an enhanced arithmetic optimization algorithm(AOA)called PSAOA that incorporates the proposed probabilistic search strategy to increase the searching quality of the original AOA.Furthermore,an adjustable parameter is also developed to balance the exploration and exploitation operations.In addition,a jump mechanism is included in the PSAOAto assist individuals in jumping out of local optima.Using 29 classical benchmark functions,the proposed PSAOA is extensively tested.Compared to the AOA and other well-known methods,the experiments demonstrated that the proposed PSAOA beats existing comparison algorithms on the majority of the test functions.
基金TheNationalGrandFundamentalResearch973ProgramofChina (No .G19980 30 6 0 0 )
文摘A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while search procedure get trapped at local optima and carry the search to areas of the feasible set with better prospect. New strategies used for breaking out of entrapments are presented and they are helpful for the procedure to improve local optima. A performance comparison of the proposed method with some best-performing algorithms on all 10-job, 10-machine benchmark problems and the other two problems generated by Fisher and Thompson (ie., FT6 and FT20)is made. The experiment results show the better optimal performance of the proposed algorithm.
文摘In this paper, we propose a new method based on index to realize IR-style Chinese keyword search with ranking strategies in relational databases. This method creates an index by using the related information of tuple words and presents a ranking strategy in terms of the nature of Chinese words. For a Chinese keyword query, the index is used to match query search words and the tuple words in index quickly, and to compute similarities between the query and tuples by the ranking strategy, and then the set of identifiers of candidate tuples is generated. Thus, we retrieve top-N results of the query using SQL selection statements and output the ranked answers according to the similarities. The experimental results show that our method is efficient and effective.
文摘The author studies the markers of searching for a word in spontaneous oral speech of Russian-speaking elderly women. The paper puts a question about age-related features of searching strategies of elderly people. While searching the informants, as a rule, recollect the only word (a noun, including their own name), they do not choose the most suitable nominations from the available options. They often refuse to search and realize an alternative speech strategy.
文摘In this paper, we investigate the elastic wave full-waveform inversion (FWI) based on the trust region method. The FWI is an optimization problem of minimizing the misfit between the observed data and simulated data. Usually</span><span style="font-family:"">,</span><span style="font-family:""> the line search method is used to update the model parameters iteratively. The line search method generates a search direction first and then finds a suitable step length along the direction. In the trust region method, it defines a trial step length within a certain neighborhood of the current iterate point and then solves a trust region subproblem. The theoretical methods for the trust region FWI with the Newton type method are described. The algorithms for the truncated Newton method with the line search strategy and for the Gauss-Newton method with the trust region strategy are presented. Numerical computations of FWI for the Marmousi model by the L-BFGS method, the Gauss-Newton method and the truncated Newton method are completed. The comparisons between the line search strategy and the trust region strategy are given and show that the trust region method is more efficient than the line search method and both the Gauss-Newton and truncated Newton methods are more accurate than the L-BFGS method.
文摘COVID-19 is a devastating pandemic with widespread negative health,social,and economic consequences.Due to drastic changes in the business environment of tour and travel agencies,firms and marketing managers can now use search engine optimization to effectively position themselves.The study’s main goal is to evaluate the effect of search engine optimization on the market performance of registered tours and travel agencies in Nairobi County,Kenya.Kenya’s tourism ministry and state government work hard to improve the business climate for tour and travel companies.Despite the overall positive image,international tourist market growth rates in Kenya have been 3.5 percent slower from 2017 to 2019 compared to previous years.This was further aggregated by the onset of the COVID-19 pandemic in the year 2020,when the growth rate of tours and travel agencies fell by 65%.The study’s main goal is to evaluate the effect of search engine optimization on the market performance of registered tours and travel agencies in Nairobi County,Kenya.This study adopted a positivist philosophy.Both descriptive and explanatory research designs were used.A self-administered semi-structured questionnaire was used to collect data from 324 registered tours and travels agencies picked from and a sample of 179 were used.Data analysis included the development and interpretation of both descriptive and inferential statistics,such as frequencies,mean,percentages,and standard deviation,and was presented using tables and numerical values.The results of regression analysis established that search engine optimization had a positive and significant effect on market performance of the registered tours and travel agencies picked from a sample of 179.The study recommends that agency management ensure that the firm’s website is easily accessible in order to improve agency performance.Using the internet to gain a large market share can assist tours and travel agencies in improving the performance and income of their websites.