Cloud computing emerges as a new computing pattern that can provide elastic services for any users around the world. It provides good chances to solve large scale scientific problems with fewer efforts. Application de...Cloud computing emerges as a new computing pattern that can provide elastic services for any users around the world. It provides good chances to solve large scale scientific problems with fewer efforts. Application deployment remains an important issue in clouds. Appropriate scheduling mechanisms can shorten the total completion time of an application and therefore improve the quality of service(QoS) for cloud users. Unlike current scheduling algorithms which mostly focus on single task allocation, we propose a deadline based scheduling approach for data-intensive applications in clouds. It does not simply consider the total completion time of an application as the sum of all its subtasks' completion time. Not only the computation capacity of virtual machine(VM) is considered, but also the communication delay and data access latencies are taken into account. Simulations show that our proposed approach has a decided advantage over the two other algorithms.展开更多
基金supported by the National Natural Science Foundation of China (51507084)the NUPTSF (NY214203)the Natural Science Foundation for Colleges and Universities in Jiangsu Province (14KJB120009)
文摘Cloud computing emerges as a new computing pattern that can provide elastic services for any users around the world. It provides good chances to solve large scale scientific problems with fewer efforts. Application deployment remains an important issue in clouds. Appropriate scheduling mechanisms can shorten the total completion time of an application and therefore improve the quality of service(QoS) for cloud users. Unlike current scheduling algorithms which mostly focus on single task allocation, we propose a deadline based scheduling approach for data-intensive applications in clouds. It does not simply consider the total completion time of an application as the sum of all its subtasks' completion time. Not only the computation capacity of virtual machine(VM) is considered, but also the communication delay and data access latencies are taken into account. Simulations show that our proposed approach has a decided advantage over the two other algorithms.