We conjecture the existence of massless neutrinos that are in the line of Standard Model (unable to account for the neutrino mass) but have characteristics that are not accounted for the Standard Model: they use a sho...We conjecture the existence of massless neutrinos that are in the line of Standard Model (unable to account for the neutrino mass) but have characteristics that are not accounted for the Standard Model: they use a shorter radial path than the photon and possess bosonic flavors, considered like bosons instead of fermions. We call this theory “neutrino temporal oscillation”. Faced with some experimental comparisons solar neutrinos, neutrinos from SN 1987A, cosmological neutrinos, the theory gives better results, explanations and sense than the complicated theory of neutrino oscillations (transformism). The deficit of detection of solar neutrinos would have been blindly attributed to the “neutrino oscillation” by physicists who quickly concluded that the neutrino and the photon follow the same transverse path. The “OPERA” experiment which measured the speed of neutrinos in 2011 resulted, after a “superluminal” saga, in neutrino speeds consistent with the speed of light, in data that the three existing types of neutrinos cannot explain, with the final outcome of a fourth “sterile” neutrino with non-standard interaction. OPERA findings aren’t just in conflict with existing theory, but other measurements as well. For example, a study from the Kamiokande II experiment in Japan of the supernova SN1987A found that light and neutrinos that departed this exploded star arrived at Earth within hours of each other. Even though measurements of the neutrinos emitted by this supernova strongly suggest that their speeds differ from light by less than one part in a billion, the fact remains that two types of data were collected, and that only one was retained to be consistent with the existing theory. Thus, the OPERA observation is in conflicts with the result of SN1987A, which itself is highly doubtful. And what about the neutrinos and antineutrinos born during the big bang, except that they were never detected and there is nothing to indicate that their speed could be other than that of light. Neutrino physics seems sick, belief is transformed into evidence. The theory of “Neutrino temporal oscillation” shows hint that massless neutrinos can take a shortcut through the three spatial dimensions of the space-time that we know. It represents within the Standard Model an open window on a “new physics” that has a connection with physical reality.展开更多
文摘We conjecture the existence of massless neutrinos that are in the line of Standard Model (unable to account for the neutrino mass) but have characteristics that are not accounted for the Standard Model: they use a shorter radial path than the photon and possess bosonic flavors, considered like bosons instead of fermions. We call this theory “neutrino temporal oscillation”. Faced with some experimental comparisons solar neutrinos, neutrinos from SN 1987A, cosmological neutrinos, the theory gives better results, explanations and sense than the complicated theory of neutrino oscillations (transformism). The deficit of detection of solar neutrinos would have been blindly attributed to the “neutrino oscillation” by physicists who quickly concluded that the neutrino and the photon follow the same transverse path. The “OPERA” experiment which measured the speed of neutrinos in 2011 resulted, after a “superluminal” saga, in neutrino speeds consistent with the speed of light, in data that the three existing types of neutrinos cannot explain, with the final outcome of a fourth “sterile” neutrino with non-standard interaction. OPERA findings aren’t just in conflict with existing theory, but other measurements as well. For example, a study from the Kamiokande II experiment in Japan of the supernova SN1987A found that light and neutrinos that departed this exploded star arrived at Earth within hours of each other. Even though measurements of the neutrinos emitted by this supernova strongly suggest that their speeds differ from light by less than one part in a billion, the fact remains that two types of data were collected, and that only one was retained to be consistent with the existing theory. Thus, the OPERA observation is in conflicts with the result of SN1987A, which itself is highly doubtful. And what about the neutrinos and antineutrinos born during the big bang, except that they were never detected and there is nothing to indicate that their speed could be other than that of light. Neutrino physics seems sick, belief is transformed into evidence. The theory of “Neutrino temporal oscillation” shows hint that massless neutrinos can take a shortcut through the three spatial dimensions of the space-time that we know. It represents within the Standard Model an open window on a “new physics” that has a connection with physical reality.