期刊文献+
共找到8,532篇文章
< 1 2 250 >
每页显示 20 50 100
Parallelization and I/O Performance Optimization of a Global Nonhydrostatic Dynamical Core Using MPI
1
作者 Tiejun Wang Liu Zhuang +2 位作者 Julian MKunkel Shu Xiao Changming Zhao 《Computers, Materials & Continua》 SCIE EI 2020年第6期1399-1413,共15页
The Global-Regional Integrated forecast System(GRIST)is the next-generation weather and climate integrated model dynamic framework developed by Chinese Academy of Meteorological Sciences.In this paper,we present sever... The Global-Regional Integrated forecast System(GRIST)is the next-generation weather and climate integrated model dynamic framework developed by Chinese Academy of Meteorological Sciences.In this paper,we present several changes made to the global nonhydrostatic dynamical(GND)core,which is part of the ongoing prototype of GRIST.The changes leveraging MPI and PnetCDF techniques were targeted at the parallelization and performance optimization to the original serial GND core.Meanwhile,some sophisticated data structures and interfaces were designed to adjust flexibly the size of boundary and halo domains according to the variable accuracy in parallel context.In addition,the I/O performance of PnetCDF decreases as the number of MPI processes increases in our experimental environment.Especially when the number exceeds 6000,it caused system-wide outages(SWO).Thus,a grouping solution was proposed to overcome that issue.Several experiments were carried out on the supercomputing platform based on Intel x86 CPUs in the National Supercomputing Center in Wuxi.The results demonstrated that the parallel GND core based on grouping solution achieves good strong scalability and improves the performance significantly,as well as avoiding the SWOs. 展开更多
关键词 MPI PARALLELIZATIoN performance optimization global nonhydrostatic dynamical core
下载PDF
Design and optimization of fluid lubricated bearings operated with extreme working performances——a comprehensive review
2
作者 Guohua Zhang Ming Huang +6 位作者 Gangli Chen Jiasheng Li Yang Liu Jianguo He Yueqing Zheng Siwei Tang Hailong Cui 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期325-376,共52页
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge... Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances. 展开更多
关键词 fluid lubricated bearings structural design performance optimization extreme working performances
下载PDF
Ballistic performance of additive manufacturing 316l stainless steel projectiles based on topology optimization method
3
作者 Hao Xue Tao Wang +2 位作者 Xinyu Cui Yifan Wang Guangyan Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期1-17,共17页
Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology... Material and structure made by additive manufacturing(AM)have received much attention lately due to their flexibility and ability to customize complex structures.This study first implements multiple objective topology optimization simulations based on a projectile perforation model,and a new topologic projectile is obtained.Then two types of 316L stainless steel projectiles(the solid and the topology)are printed in a selective laser melt(SLM)machine to evaluate the penetration performance of the projectiles by the ballistic test.The experiment results show that the dimensionless specific kinetic energy value of topologic projectiles is higher than that of solid projectiles,indicating the better penetration ability of the topologic projectiles.Finally,microscopic studies(scanning electron microscope and X-ray micro-CT)are performed on the remaining projectiles to investigate the failure mechanism of the internal structure of the topologic projectiles.An explicit dynamics simulation was also performed,and the failure locations of the residual topologic projectiles were in good agreement with the experimental results,which can better guide the design of new projectiles combining AM and topology optimization in the future. 展开更多
关键词 Additive manufacturing Topology optimization Ballistic performance Projectile design
下载PDF
Composition optimization and performance prediction for ultra-stable water-based aerosol based on thermodynamic entropy theory
4
作者 Tingting Kang Canjun Yan +6 位作者 Xinying Zhao Jingru Zhao Zixin Liu Chenggong Ju Xinyue Zhang Yun Zhang Yan Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期437-446,共10页
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th... Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security. 展开更多
关键词 Ultra-stable Water-based aerosol Thermodynamic entropy Composition optimization performance prediction
下载PDF
Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs
5
作者 Haoguang Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期198-204,共7页
We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate t... We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum c criterion will degenerate toη-=η_(C)/(2-η_(C))andε-=(√9+8ε_(C)-3)/2 when symmetric squeezing is satisfied,respectively.We also investigated the influences of squeezing degree on the performance optimization of quantum Otto heat engines at the maximum work output and refrigerators at the maximum X criterion.These analytical results show that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum X criterion can be improved,reduced or even inhibited in asymmetric squeezing.Furthermore,we also find that the efficiency of quantum Otto heat engines at maximum work output is lower than that obtained from the Otto heat engines based on a single harmonic oscillator system.However,the coefficient of performance of the corresponding refrigerator is higher. 展开更多
关键词 quantum otto heat engine quantum otto refrigerator optimization performance dual-squeezed reservoirs
下载PDF
Performance optimization of a SERF atomic magnetometer based on flat-top light beam
6
作者 袁子琪 唐钧剑 +1 位作者 林树东 翟跃阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期330-336,共7页
We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditio... We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers. 展开更多
关键词 atomic magnetometer(AM) spin-exchange relaxation-free(SERF) flat-top light beam performance optimization
下载PDF
A PID Tuning Approach for Inertial Systems Performance Optimization
7
作者 Irina Cojuhari 《Applied Mathematics》 2024年第1期96-107,共12页
In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented ... In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented two approaches for synthesis the proportional-integral-derivative controller to the models of objects with inertia, that offer the procedure of system performance optimization based on maximum stability degree criterion. The proposed algorithms of system performance optimization were elaborated for model of objects with inertia second and third order and offer simple analytical expressions for tuning the PID controller. Validation and verification are conducted through computer simulations using MATLAB, demonstrating successful performance optimization and showcasing the effectiveness PID controllers’ tuning. The proposed approaches contribute insights to the field of control, offering a pathway for optimizing the performance of second and third-order inertial systems through robust controller synthesis. 展开更多
关键词 PID Control Algorithm Inertial Systems System performance optimization Maximum Stability Degree
下载PDF
Research on the Optimization of Green Building Performance Based on BIM Technology
8
作者 Le Lv 《Journal of World Architecture》 2024年第2期160-165,共6页
With the acceleration of urbanization,the construction industry has developed rapidly worldwide but has also brought serious environmental problems.Traditional architectural design methods often only focus on the func... With the acceleration of urbanization,the construction industry has developed rapidly worldwide but has also brought serious environmental problems.Traditional architectural design methods often only focus on the function and beauty of the building while ignoring its impact on the environment.In addition,the lack of effective design and construction management methods also led to high resource and energy consumption.To overcome this challenge,the concept of green building came into being.Green buildings emphasize reducing the negative impact of buildings on the environment and improving resource utilization efficiency throughout the entire life cycle.BIM technology provides strong support for achieving this goal.Based on this,starting from the role of BIM technology in green building performance optimization,this article analyzes the optimization of green building performance solutions based on BIM technology in detail to promote the sustainable development of buildings. 展开更多
关键词 BIM technology Green building performance solution optimization
下载PDF
Optimization and Performance Analysis of Intelligent Video AI Dynamic
9
作者 Yu Xing 《Journal of Electronic Research and Application》 2024年第3期142-147,共6页
In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has be... In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has become a focus of research in the field of computer vision.AI dynamic recognition technology has become one of the key technologies to address this issue due to its powerful data processing capabilities and intelligent recognition functions.Based on this,this paper first elaborates on the development of intelligent video AI dynamic recognition technology,then proposes several optimization strategies for intelligent video AI dynamic recognition technology,and finally analyzes the performance of intelligent video AI dynamic recognition technology for reference. 展开更多
关键词 Intelligent video AI dynamic recognition Technology optimization performance analysis
下载PDF
Performance Optimization of Agricultural Machinery Monitoring WebGIS System Based on ASP.NET
10
作者 史国滨 王熙 《Agricultural Science & Technology》 CAS 2011年第2期159-162,共4页
ASP.NET-based agricultural machinery monitoring WEBGIS is flexible and dynamic,but this flexibility and dynamic characteristics reduce the performance of WEBGIS.Therefore,it is necessary to use built-in optimization f... ASP.NET-based agricultural machinery monitoring WEBGIS is flexible and dynamic,but this flexibility and dynamic characteristics reduce the performance of WEBGIS.Therefore,it is necessary to use built-in optimization features of.NET Framework,some performance optimization techniques in program design and ASP.NET cache technology to reduce the loading of server,and make the designed system work more efficiently. 展开更多
关键词 WEBGIS ASP.NET performance optimization
下载PDF
Optimal Design of the Modular Joint Drive Train for Enhancing Cobot Load Capacity and Dynamic Performance
11
作者 Peng Li Zhenguo Nie +1 位作者 Zihao Li Xinjun Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期26-40,共15页
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e... Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz. 展开更多
关键词 Multi-objective optimization Modular joint drive train design Load capacity Dynamic response performance
下载PDF
Parameter Optimization of Nose Landing Gear Considering Both Take-off and Landing Performance of Catapult Take-off Carrier-Based Aircraft 被引量:5
12
作者 Zhang Ming Nie Hong He Zhihang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第2期187-198,共12页
Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damp... Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damper dynamic model.Certain standards for both take-off and landing performance are put forward.The contradictory factors between take-off and landing processes are analyzed.The optimization of oil in the pin area and the area near the rear oil hole is performed.Then these optimized parameters are used to assess the influence of the initial pressure of the low chamber,the ratio of the high chamber to the low chamber,and the tire inflation pressure on the performance of arresting landing and catapult take-off.The influences of these parameters on carrier-based aircraft and the aircraft-carrier on aircraft catapult take-off is also assessed.Based on the results of the simulation,respective take-off criteria must be drafted considering different types of aircraft and different take-off load cases,all of which must be matched to parameters relevant to catapult take-off. 展开更多
关键词 carrier-based AIRCRAFT BUFFER performance fast-extension performance AIRCRAFT design optimization sensitivity analysis
下载PDF
CEE-Gr:A Global Router with Performance Optimization Under Multi-Constraints
13
作者 张凌 经彤 +3 位作者 洪先龙 许静宇 XiongJinjun HeLei 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第5期508-515,共8页
A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is... A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is implemented and the global router is called CEE Gr.The CEE Gr is tested on MCNC benchmarks and the experimental results are promising. 展开更多
关键词 VLSI/ULSI physical design global routing multi constraints performance optimization
下载PDF
Different effects of economic and structural performance indexes on model construction of structural topology optimization 被引量:5
14
作者 G.L.Yi Y.K.Sui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期777-788,共12页
The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of str... The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering. 展开更多
关键词 Economic index performance index Structural topology optimization models MCVC model MWDC model Safety and economy
下载PDF
Influence of Design Margin on Operation Optimization and Control Performance of Chemical Processes 被引量:8
15
作者 许锋 蒋慧蓉 +1 位作者 王锐 罗雄麟 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第1期51-58,共8页
Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operat... Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected. 展开更多
关键词 design margin operation optimization control performance BoTTLENECK fluid catalytic cracking unit(FCCU)
下载PDF
H-infinity performance optimization for networked control systems with limited communication channels 被引量:3
16
作者 Yulong WANG Guanghong YANG 《控制理论与应用(英文版)》 EI 2010年第1期99-104,共6页
This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited commu... This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels. 展开更多
关键词 Networked control systems (NCSs) Limited communication channels performance optimization Controller design
下载PDF
Light-Weight Design Method for Force-Performance-Structure of Complex Structural Part Based Co-operative Optimization 被引量:3
17
作者 Ya-Li Ma Jian-Rong Tan +1 位作者 De-Lun Wang Zi-Zhe Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期115-123,共9页
A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a... A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a complex structural part is built to map the force transmission, where the force exerted areas and constraints are considered as connecting structure and the structural configuration, to determine the part performance as well as the force routines. Then the connecting structure design model, aiming to optimize the static and dynamic performances on connection configuration, is developed, and the optimum design of the characteristic parameters is carried out by means of the collaborative optimization method, namely, the integrated structural topology optimization and size optimization. In this design model, the objective is to maximize the connecting stiffness. Based on the relationship between the force and the structural configuration of a part, the optimal force transmission routine that can meet the performance requirements is obtained using the structural topology optimization technology. Accordingly, the light?weight design of conceptual configuration for complex parts under multi?objective and multi?condition can be realized. Finally, based on the proposed collaborative optimization design method, the optimal performance and optimal structure of the complex parts with light weight are realized, and the reasonable structural unit configuration and size charac?teristic parameters are obtained. A bed structure of gantry?type machining center is designed by using the proposed light?weight structure design method in this paper, as an illustrative example. The bed after the design optimization is lighter 8% than original one, and the rail deformation is reduced by 5%. Moreover, the lightweight design of the bed is achieved with enhanced performance to show the effectiveness of the proposed method. 展开更多
关键词 Light?weight design Part structure Topology optimization Size optimization FoRCE performance
下载PDF
New development in Fe/Co catalysts:Structure modulation and performance optimization for syngas conversion 被引量:4
18
作者 Yinwen Li Xin Zhang Min Wei 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第8期1329-1346,共18页
C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is t... C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels. 展开更多
关键词 Syngas conversion Fe/Cocatalyst Structure modulation performance optimization Product selectivity
下载PDF
Performance Optimization of Fujian Digital Design and Manufacture Service Platform Based on AJAX 被引量:1
19
作者 ZHU Xiaolin GAO Chenghui HE Bingwei School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350002,China, 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1107-1110,共4页
In this paper,the problem on the service platform,which existed on the traditional WEB application mode,are analyzed in detail.It shows that application of the AJAX technology can optimize the service platform.And the... In this paper,the problem on the service platform,which existed on the traditional WEB application mode,are analyzed in detail.It shows that application of the AJAX technology can optimize the service platform.And the AJAX technology can supply the wonderful solution for the development of the high-performance WEB application by means of the WEB performance testing tool to test the network performance of the service platform. 展开更多
关键词 AJAX WEB application SERVICE PLATFoRM performance optimization
下载PDF
Optimization of technical measures for improving high-temperature performance of asphalt-rubber mixture 被引量:2
20
作者 Chuan Xiao Tianqing Ling Yanjun Qiu 《Journal of Modern Transportation》 2013年第4期273-280,共8页
Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measu... Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measurements, such as, the optimal adjustment of gradation, technique of composite modification, and control of compaction were investigated. An optimal adjustment of aggregate gradation based on stone matrix asphalt improves the high-temperature stability of the asphaltrubber mixture significantly. Through composite modifi- cation, the effect of asphalt-rubber modification was enhanced, and the dynamic stability and relative defor- mation indices of the asphalt-rubber mixture were improved significantly. Furthermore, compaction parame- ters had a significant influence on the high-temperature stability of the asphalt-rubber mixture. The rolling times for compacting the asphalt-rubber mixture should be controlled to within 18-20 round-trips at a molding temperature at 180℃; if the rolling time is a 12 round-trip, the compaction temperature of the asphalt-rubber mixture should be controlled between 180 and 190℃. 展开更多
关键词 Road engineering test Asphalt-rubber mixture performance optimization Laboratory High-temperature
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部