Multiple-input multiple-output (MIMO)-orthogonal frequency-division multiplexing (OFDM) scheme has been considered as the most promising physical-layer architecture for the future wireless systems to provide high-spee...Multiple-input multiple-output (MIMO)-orthogonal frequency-division multiplexing (OFDM) scheme has been considered as the most promising physical-layer architecture for the future wireless systems to provide high-speed communications. However, the performance of the MIMO-OFDM system may be degraded by in-phase/quadrature-phase (I/Q) imbalances caused by component imperfections in the analog front-ends of the transceivers. I/Q imbalances result in inter-carrier interference (ICI) in OFDM systems and cause inaccurate estimate of the channel state information (CSI), which is essential for diversity combining at the MIMO receiver. In this paper, we propose a novel approach to analyzing a MIMO-OFDM wireless communication system with I/Q imbalances over multi-path fading channels. A virtual channel is proposed as the combination of multi-path fading channel effects and I/Q imbalances at the transmitter and receiver. Based on this new approach, the effects of the channel and I/Q imbalances can be jointly estimated, and the influence of channel estimation error due to I/Q imbalances can be greatly reduced. An optimal minimal mean square error (MMSE) estimator and a low-complexity least square (LS) estimator are employed to estimate the joint coefficients of the virtual channel, which are then used to equalize the distorted signals. System performance is theoretically analyzed and verified by simulation experiments under different system configurations. The results show that the proposed method can significantly improve system performance that is close to the ideal case in which I/Q are balanced and the channel state information is known at the receiver.展开更多
A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adh...A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.展开更多
Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings.Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia.Dynamin-related protein 1(Drp1)regulates ...Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings.Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia.Dynamin-related protein 1(Drp1)regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications,which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury.However,there is active controversy and gaps in knowledge regarding the modification,protein interaction,and functions of Drp1,which both hinder and promote development of Drp1 as a novel therapeutic target.Here,we summarize recent findings on the oligomeric changes,modification types,and protein interactions of Drp1 in various hypoxic-ischemic diseases,as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia.Additionally,potential clinical translation prospects for targeting Drp1 are discussed.This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.展开更多
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a...A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.展开更多
A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the recei...A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the receiver.A high-efficiency time-domain TD least square LS channel estimator and a low-complexity frequency-domain Gaussian elimination GE equalizer are proposed to eliminate IQ distortion.The former estimator can significantly suppress channel noise by a factor N/L+1 over the existing frequency-domain FD LS where N and L+1 are the total number of subcarriers and the length of cyclic prefix and the proposed GE requires only 2N complex multiplications per OFDM symbol.Simulation results show that by exploiting the TD property of the channel the proposed TD-LS channel estimator obtains a significant signal-to-noise ratio gain over the existing FD-LS one whereas the proposed low-complexity GE compensation achieves the same bit error rate BER performance as the existing LS one.展开更多
为实现高超声速飞行器姿态自抗扰控制的参数整定,提出一种模糊Q学习算法。首先,采用强化学习中的Q学习算法来实现姿态自抗扰控制参数的离线闭环快速自适应整定;然后,根据模糊控制的思路,将控制参数划分为不同区域,通过设定奖励,不断更新...为实现高超声速飞行器姿态自抗扰控制的参数整定,提出一种模糊Q学习算法。首先,采用强化学习中的Q学习算法来实现姿态自抗扰控制参数的离线闭环快速自适应整定;然后,根据模糊控制的思路,将控制参数划分为不同区域,通过设定奖励,不断更新Q表;最后,将训练好的Q表用于飞行器的控制。仿真结果表明,相对于传统的线性自抗扰控制(linear active disturbance rejection control,LADRC)和滑模控制,基于Q学习的LADRC省去了人工调试参数的繁琐过程,且仍具有良好的跟踪效果。蒙特卡罗仿真测试结果验证了基于Q学习的LADRC的鲁棒性。展开更多
传统的拓扑优化算法均基于灵敏度分析的方式求解,如渐进结构优化法(Evolutionary Structural Optimization, ESO)和变密度法(Solid Isotropic Material with Penalization, SIMP)等,灵敏度分析依赖于严谨的数学模型,结果可信度高,但面...传统的拓扑优化算法均基于灵敏度分析的方式求解,如渐进结构优化法(Evolutionary Structural Optimization, ESO)和变密度法(Solid Isotropic Material with Penalization, SIMP)等,灵敏度分析依赖于严谨的数学模型,结果可信度高,但面对不同的结构和约束条件都需要反复重新推导单元灵敏度,对使用人员的数学能力有较高要求,而且也导致了收敛速度慢、迭代步数多的问题。针对现有优化方法中存在的缺陷,结合强化学习Q学习理论和元胞自动机原理,提出一种新的拓扑优化方法:Q学习-元胞法(Q-learning-Cellular Automaton, QCA),尝试为工程构件的优化设计提供一种新思路。这种方法以有限元单元作为元胞,将所有元胞的智能行为集成为一个Q-learning智能体。训练过程中,各个元胞首先完成对自身环境的感知,然后调用智能体进行决策并通过环境交互得到反馈,智能体也借此得到大量数据来学习更新,整个过程不涉及数学模型推导,通过智能体和元胞的不断探索即可完成优化。在此基础上,探讨元胞的选择及其邻域和状态的描述方式,针对元胞的动作空间及收益函数进行比选,进而编制相关拓扑优化软件。优化算例表明,QCA方法优化后的拓扑构型与传统优化方法的构型基本一致,迭代步数较SIMP法降低了64%,且柔顺度更低。Q学习-元胞法在结构拓扑优化中具备良好的可行性,计算效率高且具有迁移优化能力,在结构拓扑优化领域极具潜力。展开更多
文摘Multiple-input multiple-output (MIMO)-orthogonal frequency-division multiplexing (OFDM) scheme has been considered as the most promising physical-layer architecture for the future wireless systems to provide high-speed communications. However, the performance of the MIMO-OFDM system may be degraded by in-phase/quadrature-phase (I/Q) imbalances caused by component imperfections in the analog front-ends of the transceivers. I/Q imbalances result in inter-carrier interference (ICI) in OFDM systems and cause inaccurate estimate of the channel state information (CSI), which is essential for diversity combining at the MIMO receiver. In this paper, we propose a novel approach to analyzing a MIMO-OFDM wireless communication system with I/Q imbalances over multi-path fading channels. A virtual channel is proposed as the combination of multi-path fading channel effects and I/Q imbalances at the transmitter and receiver. Based on this new approach, the effects of the channel and I/Q imbalances can be jointly estimated, and the influence of channel estimation error due to I/Q imbalances can be greatly reduced. An optimal minimal mean square error (MMSE) estimator and a low-complexity least square (LS) estimator are employed to estimate the joint coefficients of the virtual channel, which are then used to equalize the distorted signals. System performance is theoretically analyzed and verified by simulation experiments under different system configurations. The results show that the proposed method can significantly improve system performance that is close to the ideal case in which I/Q are balanced and the channel state information is known at the receiver.
基金the High-Performance Computing Platform of Beijing University of Chemical Technology(BUCT)for supporting this papersupported by the Fundamental Research Funds for the Central Universities(JD2319)+2 种基金the CNOOC Technical Cooperation Project(ZX2022ZCTYF7612)the National Natural Science Foundation of China(51775029,52004014)the Chinese Universities Scientific Fund(XK2020-04)。
文摘A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.
基金This work was supported by the National Natural Science Foundation of China(82272252,82270378)the Senior Medical Talents Program of Chongqing for Young and Middle-agedthe Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University.
文摘Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings.Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia.Dynamin-related protein 1(Drp1)regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications,which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury.However,there is active controversy and gaps in knowledge regarding the modification,protein interaction,and functions of Drp1,which both hinder and promote development of Drp1 as a novel therapeutic target.Here,we summarize recent findings on the oligomeric changes,modification types,and protein interactions of Drp1 in various hypoxic-ischemic diseases,as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia.Additionally,potential clinical translation prospects for targeting Drp1 are discussed.This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.
文摘A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.
基金The Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2013D02)the Fundamental Research Funds for the Central Universities(No.30920130122004)the National Natural Science Foundation of China(No.61271230,61472190)
文摘A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the receiver.A high-efficiency time-domain TD least square LS channel estimator and a low-complexity frequency-domain Gaussian elimination GE equalizer are proposed to eliminate IQ distortion.The former estimator can significantly suppress channel noise by a factor N/L+1 over the existing frequency-domain FD LS where N and L+1 are the total number of subcarriers and the length of cyclic prefix and the proposed GE requires only 2N complex multiplications per OFDM symbol.Simulation results show that by exploiting the TD property of the channel the proposed TD-LS channel estimator obtains a significant signal-to-noise ratio gain over the existing FD-LS one whereas the proposed low-complexity GE compensation achieves the same bit error rate BER performance as the existing LS one.
文摘为实现高超声速飞行器姿态自抗扰控制的参数整定,提出一种模糊Q学习算法。首先,采用强化学习中的Q学习算法来实现姿态自抗扰控制参数的离线闭环快速自适应整定;然后,根据模糊控制的思路,将控制参数划分为不同区域,通过设定奖励,不断更新Q表;最后,将训练好的Q表用于飞行器的控制。仿真结果表明,相对于传统的线性自抗扰控制(linear active disturbance rejection control,LADRC)和滑模控制,基于Q学习的LADRC省去了人工调试参数的繁琐过程,且仍具有良好的跟踪效果。蒙特卡罗仿真测试结果验证了基于Q学习的LADRC的鲁棒性。