Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law kn...What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law known as Homes'law,there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to the superfluid density(ρ_(s))of its ground state and the conductivity(σ)of its normal state.However,all the data supporting this empirical law(ρ_(s)=AσT_(c))have been obtained from the ambientpressure superconductors.In this study,we present the first high-pressure results about the connection of the quantities of ρ_(s) and σ with T_(c),through the studies on the Bi_(1.74)Pb_(0.38)Sr_(1.88)CuO_(6+δ)and Bi_(2)Sr_(2)CaCu_(2)O_(8+δ),in which the value of their high-pressure resistivity(ρ=1/σ)is achieved by adopting our newly established method,while the quantity ofρs is extracted using Homes'law.We highlight that the Tc values are strongly linked to the joint response factors of magnetic field and electric field,i.e.,ρ_(s) and σ,respectively,implying that the physics determining T_(c) is governed by the intrinsic electromagnetic fields of the system.展开更多
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec...Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns relat...The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.展开更多
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical fra...It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical framework for the study of RST.Taking two typical villages with different transition paths in rural areas of North China Plain as examples,this paper reveals the mechanism of RST and makes a comparative analysis.The results show that:1)after identifying problems and obligatory passage point,key actors recruit heterogeneous actors into the actor network by entrusting them with common interests,and realize RST under the system operation.2)Rural settlements under different transition paths have similarities in the problems to be solved,collective actions and policy factors,but there are differences in the transition process,mechanism and effect.The actor network and mechanism of RST through the path of new rural community construction are more complex and the transition effect is more thorough.In contrast,the degree of RST of retention development path is limited if there is no resource and location advantage.3)Based on the applicable conditions of different paths,this paper designs a logical framework of‘Situation-Structure-Behavior-Result’to scientifically guide the identification of RST paths under the background of rural revitalization.展开更多
Controlling collective electronic states hold great promise for development of innovative devices. Here, we experimentally detect the modification of the charge density wave(CDW) phase transition within a 1T-TaS_(2) l...Controlling collective electronic states hold great promise for development of innovative devices. Here, we experimentally detect the modification of the charge density wave(CDW) phase transition within a 1T-TaS_(2) layer in a WS_(2)/1T-TaS_(2) heterostructure using time-resolved ultrafast spectroscopy. Laser-induced charge transfer doping strongly suppresses the commensurate CDW phase, which results in a significant decrease in both the phase transition temperature(T_(c)) and phase transition stiffness. We interpret the phenomenon that photoinduced hole doping, when surpassing a critical threshold value of ~ 10^(18)cm^(-3), sharply decreases the phase transition energy barrier. Our results provide new insights into controlling the CDW phase transition, paving the way for optical-controlled novel devices based on CDW materials.展开更多
Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) un...Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.展开更多
The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,esp...The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.展开更多
We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle.By adjusting the loss rate of cavities,we map out the phas...We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle.By adjusting the loss rate of cavities,we map out the phase diagram of steady states within a mean field framework.It is found that when the loss rates of the two cavities are different,superradiant transitions may not occur at the same time in the two cavities.A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance.In the case that both cavities are superradiant,a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate.The photon current shows a non-monotonic dependence on the loss rate difference,owing to the competition of photon number difference and cavity field phase difference.Our findings can be realized and detected in experiments.展开更多
China's energy transition is based on accelerating the construction of a clean,low-carbon,safe,and efficient new energy system(Fig.1),providing strong energy security for economic and social development;focusing o...China's energy transition is based on accelerating the construction of a clean,low-carbon,safe,and efficient new energy system(Fig.1),providing strong energy security for economic and social development;focusing on ecological civilization construction,and accelerating the formation of a new energy consumption model that is efficient,green,inclusive,and beneficial,while promoting carbon reduction,pollution reduction,expansion of green spaces,and economic growth.展开更多
Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in man...Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.The authors were contacted and invited to comment on the concerns raised and to provide the original,unmodified figures,but did not respond.展开更多
Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently le...Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.展开更多
Rational design of efficient pH-universal hydrogen evolution reaction catalysts to enable large-scale hydrogen production via electrochemical water splitting is of great significance,yet a challenging task.Herein,Ru a...Rational design of efficient pH-universal hydrogen evolution reaction catalysts to enable large-scale hydrogen production via electrochemical water splitting is of great significance,yet a challenging task.Herein,Ru atoms in the Ru_(2)P structure were replaced with M=Co,Ni,or Mo to produce M_(2-x)Ru_(x)P nanocrystals.The metals show strong site preference,with Co and Ni occupying the tetrahedral sites and Ru the square pyramidal sites of the CoRuP and NiRuP Ru_(2)P-type structures.The presence of Co or Ni in the tetrahedral sites leads to charge redistribution for Ru and,according to density functional theory calculations,a significant increase in the Ru d-band centers.As a result,the intrinsic activity of CoRuP and NiRuP increases considerably compared to Ru_(2)P in both acidic and alkaline media.The effect is not observed for MoRuP,in which Mo prefers to occupy the pyramidal sites.In particular,CoRuP shows state-of-the-art activity,outperforming Ru_(2)P with Pt-like activity in 0.5 M H_(2)SO_(4)(η10=12.3 mV;η100=52 mV;turnover frequency(TOF)=4.7 s^(-1)).It remains extraordinarily active in alkaline conditions(η10=12.9 mV;η100=43.5 mV)with a TOF of 4.5 s^(-1),which is 4x higher than that of Ru_(2)P and 10x that of Pt/C.Further increase in the Co content does not lead to drastic loss of activity,especially in alkaline medium,where,for example,the TOF of Co_(1.9)Ru_(0.1)P remains comparable to that of Ru_(2)P and higher than that of Pt/C,highlighting the viability of the adopted approach to prepare cost-efficient catalysts.展开更多
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy...This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.展开更多
This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behavior...This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density.展开更多
In classical matter systems, typical phase-transition phenomena usually stem from changes in state variables, such as temperature and pressure, induced by external regulations such as heat transfer and volume adjustme...In classical matter systems, typical phase-transition phenomena usually stem from changes in state variables, such as temperature and pressure, induced by external regulations such as heat transfer and volume adjustment. However, in active matter systems, the self-propulsion nature of active particles endows the systems with the ability to induce unique collectivestate transitions by spontaneously regulating individual properties to alter the overall states. Based on an innovative robot-swarm experimental system, we demonstrate a field-driven active matter model capable of modulating individual motion behaviors through interaction with a recoverable environmental resource field by the resource perception and consumption.In the simulated model, by gradually reducing the individual resource-conversion coefficient over time, this robotic active matter can spontaneously decrease the overall level of motion, thereby actively achieving a regulation behavior like the cooling-down control. Through simulation calculations, we discover that the spatial structures of this robotic active matter convert from disorder to order during this process, with the resulting ordered structures exhibiting a high self-adaptability on the geometry of the environmental boundaries.展开更多
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFA1401800 and 2022YFA1403900)the National Natural Science Foundation of China(Grant Nos.U2032214,12122414,12104487,and 12004419)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)supported by the US Department of Energy,Office of Basic Energy Sciences(Grant No.DOE-sc0012704)。
文摘What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law known as Homes'law,there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to the superfluid density(ρ_(s))of its ground state and the conductivity(σ)of its normal state.However,all the data supporting this empirical law(ρ_(s)=AσT_(c))have been obtained from the ambientpressure superconductors.In this study,we present the first high-pressure results about the connection of the quantities of ρ_(s) and σ with T_(c),through the studies on the Bi_(1.74)Pb_(0.38)Sr_(1.88)CuO_(6+δ)and Bi_(2)Sr_(2)CaCu_(2)O_(8+δ),in which the value of their high-pressure resistivity(ρ=1/σ)is achieved by adopting our newly established method,while the quantity ofρs is extracted using Homes'law.We highlight that the Tc values are strongly linked to the joint response factors of magnetic field and electric field,i.e.,ρ_(s) and σ,respectively,implying that the physics determining T_(c) is governed by the intrinsic electromagnetic fields of the system.
基金supported by National Undergraduate Training Programs for Innovations[grant number 202210225259]the Outstanding Youth Project of Natural Science Foundation in Heilongjiang Province(YQ2022E040)+3 种基金the Shandong Provincial Natural Science Foundation(ZR2022ME166)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q20023)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020197)the 111 Project(B20088).
文摘Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
基金University of the Witwatersrand Additional funding is from the DSI-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
基金Under the auspices of the Taishan Scholars Project Special FundsNational Natural Science Fundation of China(No.42077434,42001199)Youth Innovation Technology Project of Higher School in Shandong Province(No.2019RWG016)。
文摘It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical framework for the study of RST.Taking two typical villages with different transition paths in rural areas of North China Plain as examples,this paper reveals the mechanism of RST and makes a comparative analysis.The results show that:1)after identifying problems and obligatory passage point,key actors recruit heterogeneous actors into the actor network by entrusting them with common interests,and realize RST under the system operation.2)Rural settlements under different transition paths have similarities in the problems to be solved,collective actions and policy factors,but there are differences in the transition process,mechanism and effect.The actor network and mechanism of RST through the path of new rural community construction are more complex and the transition effect is more thorough.In contrast,the degree of RST of retention development path is limited if there is no resource and location advantage.3)Based on the applicable conditions of different paths,this paper designs a logical framework of‘Situation-Structure-Behavior-Result’to scientifically guide the identification of RST paths under the background of rural revitalization.
基金supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400201)the CAS Project for Young Scientists in Basic Research (Grant No. YSBR059)+5 种基金the Beijing Natural Science Foundation (Grant No. 4191003)the National Natural Science Foundation of China (Grant No. 11774408)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. GJJSTD20200005)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB36000000 and XDB30000000)the International Partnership Program of Chinese Academy of Sciences (Grant No. GJHZ1826)CAS Interdisciplinary Innovation Team。
文摘Controlling collective electronic states hold great promise for development of innovative devices. Here, we experimentally detect the modification of the charge density wave(CDW) phase transition within a 1T-TaS_(2) layer in a WS_(2)/1T-TaS_(2) heterostructure using time-resolved ultrafast spectroscopy. Laser-induced charge transfer doping strongly suppresses the commensurate CDW phase, which results in a significant decrease in both the phase transition temperature(T_(c)) and phase transition stiffness. We interpret the phenomenon that photoinduced hole doping, when surpassing a critical threshold value of ~ 10^(18)cm^(-3), sharply decreases the phase transition energy barrier. Our results provide new insights into controlling the CDW phase transition, paving the way for optical-controlled novel devices based on CDW materials.
基金supported by the National Natural Science Foundation of China (Grant No. 12304072)Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004)+1 种基金Natural Science Foundation of Ningbo(Grant No. 2021J121)supported by the User Experiment Assist System of Shanghai Synchrotron Radiation Facility (SSRF)。
文摘Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.
文摘The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1405300)the National Natural Science Foundation of China(Grant Nos.11734010,12074428,12174358,and 92265208)NSAF(Grant No.U2330401)。
文摘We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle.By adjusting the loss rate of cavities,we map out the phase diagram of steady states within a mean field framework.It is found that when the loss rates of the two cavities are different,superradiant transitions may not occur at the same time in the two cavities.A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance.In the case that both cavities are superradiant,a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate.The photon current shows a non-monotonic dependence on the loss rate difference,owing to the competition of photon number difference and cavity field phase difference.Our findings can be realized and detected in experiments.
文摘China's energy transition is based on accelerating the construction of a clean,low-carbon,safe,and efficient new energy system(Fig.1),providing strong energy security for economic and social development;focusing on ecological civilization construction,and accelerating the formation of a new energy consumption model that is efficient,green,inclusive,and beneficial,while promoting carbon reduction,pollution reduction,expansion of green spaces,and economic growth.
文摘Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.The authors were contacted and invited to comment on the concerns raised and to provide the original,unmodified figures,but did not respond.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82172660)Hebei Province Graduate Student Innovation Project(Grant No.CXZZBS2023001)Baoding Natural Science Foundation(Grant No.H2272P015).
文摘Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.
文摘Rational design of efficient pH-universal hydrogen evolution reaction catalysts to enable large-scale hydrogen production via electrochemical water splitting is of great significance,yet a challenging task.Herein,Ru atoms in the Ru_(2)P structure were replaced with M=Co,Ni,or Mo to produce M_(2-x)Ru_(x)P nanocrystals.The metals show strong site preference,with Co and Ni occupying the tetrahedral sites and Ru the square pyramidal sites of the CoRuP and NiRuP Ru_(2)P-type structures.The presence of Co or Ni in the tetrahedral sites leads to charge redistribution for Ru and,according to density functional theory calculations,a significant increase in the Ru d-band centers.As a result,the intrinsic activity of CoRuP and NiRuP increases considerably compared to Ru_(2)P in both acidic and alkaline media.The effect is not observed for MoRuP,in which Mo prefers to occupy the pyramidal sites.In particular,CoRuP shows state-of-the-art activity,outperforming Ru_(2)P with Pt-like activity in 0.5 M H_(2)SO_(4)(η10=12.3 mV;η100=52 mV;turnover frequency(TOF)=4.7 s^(-1)).It remains extraordinarily active in alkaline conditions(η10=12.9 mV;η100=43.5 mV)with a TOF of 4.5 s^(-1),which is 4x higher than that of Ru_(2)P and 10x that of Pt/C.Further increase in the Co content does not lead to drastic loss of activity,especially in alkaline medium,where,for example,the TOF of Co_(1.9)Ru_(0.1)P remains comparable to that of Ru_(2)P and higher than that of Pt/C,highlighting the viability of the adopted approach to prepare cost-efficient catalysts.
文摘This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.
基金the National Natural Science Foundation of China(Grant No.62273033).
文摘This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density.
基金Project supported by the National Natural Science Foundation of China(Grant No.12174041)China Postdoctoral Science Foundation(Grant No.2022M723118)the Seed Grants from the Wenzhou Institute,University of Chinese Academy of Sciences(Grant No.WIUCASQD2021002)。
文摘In classical matter systems, typical phase-transition phenomena usually stem from changes in state variables, such as temperature and pressure, induced by external regulations such as heat transfer and volume adjustment. However, in active matter systems, the self-propulsion nature of active particles endows the systems with the ability to induce unique collectivestate transitions by spontaneously regulating individual properties to alter the overall states. Based on an innovative robot-swarm experimental system, we demonstrate a field-driven active matter model capable of modulating individual motion behaviors through interaction with a recoverable environmental resource field by the resource perception and consumption.In the simulated model, by gradually reducing the individual resource-conversion coefficient over time, this robotic active matter can spontaneously decrease the overall level of motion, thereby actively achieving a regulation behavior like the cooling-down control. Through simulation calculations, we discover that the spatial structures of this robotic active matter convert from disorder to order during this process, with the resulting ordered structures exhibiting a high self-adaptability on the geometry of the environmental boundaries.