An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved v...An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.展开更多
Statistical biases may be introduced by imprecisely quantifying background radiation reference levels. It is, therefore, imperative to devise a simple, adaptable approach for precisely describing the reference backgro...Statistical biases may be introduced by imprecisely quantifying background radiation reference levels. It is, therefore, imperative to devise a simple, adaptable approach for precisely describing the reference background levels of naturally occurring radionuclides (NOR) in mining sites. As a substitute statistical method, we suggest using Bayesian modeling in this work to examine the spatial distribution of NOR. For naturally occurring gamma-induced radionuclides like 232Th, 40K, and 238U, statistical parameters are inferred using the Markov Chain Monte Carlo (MCMC) method. After obtaining an accurate subsample using bootstrapping, we exclude any possible outliers that fall outside of the Highest Density Interval (HDI). We use MCMC to build a Bayesian model with the resampled data and make predictions about the posterior distribution of radionuclides produced by gamma irradiation. This method offers a strong and dependable way to describe NOR reference background values, which is important for managing and evaluating radiation risks in mining contexts.展开更多
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To ...When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.展开更多
The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural...The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural fractures,where the fracture is assumed to be an elliptical disc and the fracture orientation,rotation angle,length of the long axis and ratio of short-long axis lengths are considered as variables.This paper aims to estimate the fracture size-and azimuth-related parameters in the UED model based on the trace information from sampling windows.The stereological relationship between the trace length,size-and azimuth-related parameters of the UED model was established,and the formulae of the mean value and standard deviation of trace length were proposed.The proposed formulae were validated via the Monte Carlo simulations with less than 5%of error rate between the calculated and true values.With respect to the estimation of the size-and azimuth-related parameters using the trace length,an optimization method was developed based on the pre-assumed size and azimuth distribution forms.A hypothetical case study was designed to illustrate and verify the parameter estimation method,where three combinations of the sampling windows were used to estimate the parameters,and the results showed that the estimated values could agree well with the true values.Furthermore,a hypothetical three-dimensional(3D)elliptical fracture network was constructed,and the circular disc,non-UED and UED models were used to represent it.The simulated trace information from different models was compared,and the results clearly illustrated the superiority of the proposed UED model over the existing circular disc and non-UED models。展开更多
This paper proposes a case study in the control of a heavy oil pyrolysis/cracking furnace with a newly extended U-model based pole placement controller(U-PPC). The major work of the paper includes: 1) establishing a c...This paper proposes a case study in the control of a heavy oil pyrolysis/cracking furnace with a newly extended U-model based pole placement controller(U-PPC). The major work of the paper includes: 1) establishing a control oriented nonlinear dynamic model with Naphtha cracking and thermal dynamics; 2) analysing a U-model(i.e., control oriented prototype) representation of various popular process model sets; 3)designing the new U-PPC to enhance the control performance in pole placement and stabilisation; 4) taking computational bench tests to demonstrate the control system design and performance with a user-friendly step by step procedure.展开更多
The edge transport code SOLPS5.0 is used to model edge plasmas in the experi- mental shots on JT-60U and the profiles of the transverse particle and heat transport coefficients D, Xe and Xi along the outer midplane ar...The edge transport code SOLPS5.0 is used to model edge plasmas in the experi- mental shots on JT-60U and the profiles of the transverse particle and heat transport coefficients D, Xe and Xi along the outer midplane are obtained by fitting the simulational results to the experimental data in L-mode shot 39090 and H-mode shots 37851, 37856. The modelling and fitting results show that within the pedestal region in H-mode shots 37851 and 37856 the radial particle transport coefficient D exhibits a significant drop, but, for L-mode shot 39090, the obvious drop in both D and Xe was not found.展开更多
U(3)-O(4) transitional description of diatomic molecules in the U(4) vibron model is studied by usingthe algebraic Bethe ansatz, in which the O(4) limit is a special case of the theory. Vibrational band-heads of somet...U(3)-O(4) transitional description of diatomic molecules in the U(4) vibron model is studied by usingthe algebraic Bethe ansatz, in which the O(4) limit is a special case of the theory. Vibrational band-heads of sometypical diatomic molecules are fitted by both transitional theory and the O(4) limit within the same framework. Theresults show that there are evident deviations from the O(4) limit in description of vibrational spectra of some diatomicmolecules.展开更多
Entanglement in quantum theory is a concept that has confused many scientists. This concept implies that the cluster property, which means no relations between sufficiently separated two events, is non-trivial. In the...Entanglement in quantum theory is a concept that has confused many scientists. This concept implies that the cluster property, which means no relations between sufficiently separated two events, is non-trivial. In the works for some quantum spin systems, which have been recently published by the author, extensive and quantitative examinations were made about the violation of cluster property in the correlation function of the spin operator. The previous study of these quantum antiferromagnets showed that this violation is induced by the degenerate states in the systems where the continuous symmetry spontaneously breaks. Since this breaking is found in many materials such as the high temperature superconductors and the superfluidity, it is an important question whether we can observe the violation of the cluster property in them. As a step to answer this question we study a quantum nonlinear sigma model with U(1) symmetry in this paper. It is well known that this model, which has been derived as an effective model of the quantum spin systems, can also be applied to investigations of many materials. Notifying that the existence of the degenerate states is essential for the violation, we made numerical calculations in addition to theoretical arguments to find these states in the nonlinear sigma model. Then, successfully finding the degenerate states in the model, we came to a conclusion that there is a chance to observe the violation of cluster property in many materials to which the nonlinear sigma model applies.展开更多
Effect of kinetic model parameters on fission product (I-129) activity from fuel to coolant in PWRs has been studied in this work. First a computational model was developed for fission product release into primary coo...Effect of kinetic model parameters on fission product (I-129) activity from fuel to coolant in PWRs has been studied in this work. First a computational model was developed for fission product release into primary coolant using ORIGEN-2 as subroutine. The model is based on set of differential equations of kinetic model which includes fuel-to-gap release model, gap-to-coolant leakage model, and Booths diffusion model. A Matlab based computer program FPAPC (Fission Product Activity in Primary Coolant) was developed. Variations of I-129 activity in Primary Heat Transport System were computed and computed values of i-129 were found in good agreement and deviations were within 2% - 3% of already published data values. Finally, the effects of coolant purification rate, diffusion constant and gas escape rate on I-129 activity were studied and results indicated that the coolant purification rate is the most sensitive parameter for fission product activity in primary circuit. For changes of 5% in steps from −10% to +10% in the coolant purification rate constant (Β), the activity variation after 200 days of reactor operation was 23.1% for the change.展开更多
We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (...We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (△3)are investigated, and the factors that affect the properties of level statistics are also discussed. The results show that the boson number N is a dominant factor. If N is small, both the interaction strengths of subgroups SOB(5) and SOBF(5)and the spin play important roles in the energy level statistics, however, along with the increase of N, the statistics distribution would tend to be in Poisson form.展开更多
基金supported by the State Key Development Program for Basic Research of China (Nos. 2008CB717803, 2009GB107001, and2007CB209903)the Research Fund for the Doctoral Program of Higher Education of China (No. 200610011023)
文摘An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.
文摘Statistical biases may be introduced by imprecisely quantifying background radiation reference levels. It is, therefore, imperative to devise a simple, adaptable approach for precisely describing the reference background levels of naturally occurring radionuclides (NOR) in mining sites. As a substitute statistical method, we suggest using Bayesian modeling in this work to examine the spatial distribution of NOR. For naturally occurring gamma-induced radionuclides like 232Th, 40K, and 238U, statistical parameters are inferred using the Markov Chain Monte Carlo (MCMC) method. After obtaining an accurate subsample using bootstrapping, we exclude any possible outliers that fall outside of the Highest Density Interval (HDI). We use MCMC to build a Bayesian model with the resampled data and make predictions about the posterior distribution of radionuclides produced by gamma irradiation. This method offers a strong and dependable way to describe NOR reference background values, which is important for managing and evaluating radiation risks in mining contexts.
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
基金supported by the National Natural Science Foundation of China,Nos.41874001 and 41664001Support Program for Outstanding Youth Talents in Jiangxi Province,No.20162BCB23050National Key Research and Development Program,No.2016YFB0501405。
文摘When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.
基金funded by National Natural Science Foundation of China(Grant No.41972264)Zhejiang Provincial Natural Science Foundation of China(Grant No.LR22E080002)the Observation and Research Station of Geohazards in Zhejiang,Ministry of Natural Resources,China(Grant No.ZJDZGCZ-2021).
文摘The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural fractures,where the fracture is assumed to be an elliptical disc and the fracture orientation,rotation angle,length of the long axis and ratio of short-long axis lengths are considered as variables.This paper aims to estimate the fracture size-and azimuth-related parameters in the UED model based on the trace information from sampling windows.The stereological relationship between the trace length,size-and azimuth-related parameters of the UED model was established,and the formulae of the mean value and standard deviation of trace length were proposed.The proposed formulae were validated via the Monte Carlo simulations with less than 5%of error rate between the calculated and true values.With respect to the estimation of the size-and azimuth-related parameters using the trace length,an optimization method was developed based on the pre-assumed size and azimuth distribution forms.A hypothetical case study was designed to illustrate and verify the parameter estimation method,where three combinations of the sampling windows were used to estimate the parameters,and the results showed that the estimated values could agree well with the true values.Furthermore,a hypothetical three-dimensional(3D)elliptical fracture network was constructed,and the circular disc,non-UED and UED models were used to represent it.The simulated trace information from different models was compared,and the results clearly illustrated the superiority of the proposed UED model over the existing circular disc and non-UED models。
基金partially supported by the National Natural Science Foundation of China(61273188,61473312)Taishan Scholar Construction Engineering Special Funding of Shandong
文摘This paper proposes a case study in the control of a heavy oil pyrolysis/cracking furnace with a newly extended U-model based pole placement controller(U-PPC). The major work of the paper includes: 1) establishing a control oriented nonlinear dynamic model with Naphtha cracking and thermal dynamics; 2) analysing a U-model(i.e., control oriented prototype) representation of various popular process model sets; 3)designing the new U-PPC to enhance the control performance in pole placement and stabilisation; 4) taking computational bench tests to demonstrate the control system design and performance with a user-friendly step by step procedure.
基金supported by the National Natural Science Foundation of China [grant number 42276008]the Laoshan Laboratory[grant number LSKJ202202403-2]+2 种基金supported by the National Natural Science Foundation of China [grant number 42030410]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB40000000]the Startup Foundation for Introducing Talent of NUIST
基金supported by National Natural Science Foundation of China (No. 10975158), the National Magnetic Confinenmnt Fusion Research Program of China (Nos. 2009GB106002, 2010GB104005) and in part by the JSPS-CAS Core University program in the field of 'Plasma and Nuclear Fusion'
文摘The edge transport code SOLPS5.0 is used to model edge plasmas in the experi- mental shots on JT-60U and the profiles of the transverse particle and heat transport coefficients D, Xe and Xi along the outer midplane are obtained by fitting the simulational results to the experimental data in L-mode shot 39090 and H-mode shots 37851, 37856. The modelling and fitting results show that within the pedestal region in H-mode shots 37851 and 37856 the radial particle transport coefficient D exhibits a significant drop, but, for L-mode shot 39090, the obvious drop in both D and Xe was not found.
基金The project supported by National Natural Science foundation of China under Grant No.10175031the Natural Science Foundation of Liaoning Province of China under Grant No.2001101053
文摘U(3)-O(4) transitional description of diatomic molecules in the U(4) vibron model is studied by usingthe algebraic Bethe ansatz, in which the O(4) limit is a special case of the theory. Vibrational band-heads of sometypical diatomic molecules are fitted by both transitional theory and the O(4) limit within the same framework. Theresults show that there are evident deviations from the O(4) limit in description of vibrational spectra of some diatomicmolecules.
文摘Entanglement in quantum theory is a concept that has confused many scientists. This concept implies that the cluster property, which means no relations between sufficiently separated two events, is non-trivial. In the works for some quantum spin systems, which have been recently published by the author, extensive and quantitative examinations were made about the violation of cluster property in the correlation function of the spin operator. The previous study of these quantum antiferromagnets showed that this violation is induced by the degenerate states in the systems where the continuous symmetry spontaneously breaks. Since this breaking is found in many materials such as the high temperature superconductors and the superfluidity, it is an important question whether we can observe the violation of the cluster property in them. As a step to answer this question we study a quantum nonlinear sigma model with U(1) symmetry in this paper. It is well known that this model, which has been derived as an effective model of the quantum spin systems, can also be applied to investigations of many materials. Notifying that the existence of the degenerate states is essential for the violation, we made numerical calculations in addition to theoretical arguments to find these states in the nonlinear sigma model. Then, successfully finding the degenerate states in the model, we came to a conclusion that there is a chance to observe the violation of cluster property in many materials to which the nonlinear sigma model applies.
文摘Effect of kinetic model parameters on fission product (I-129) activity from fuel to coolant in PWRs has been studied in this work. First a computational model was developed for fission product release into primary coolant using ORIGEN-2 as subroutine. The model is based on set of differential equations of kinetic model which includes fuel-to-gap release model, gap-to-coolant leakage model, and Booths diffusion model. A Matlab based computer program FPAPC (Fission Product Activity in Primary Coolant) was developed. Variations of I-129 activity in Primary Heat Transport System were computed and computed values of i-129 were found in good agreement and deviations were within 2% - 3% of already published data values. Finally, the effects of coolant purification rate, diffusion constant and gas escape rate on I-129 activity were studied and results indicated that the coolant purification rate is the most sensitive parameter for fission product activity in primary circuit. For changes of 5% in steps from −10% to +10% in the coolant purification rate constant (Β), the activity variation after 200 days of reactor operation was 23.1% for the change.
文摘We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (△3)are investigated, and the factors that affect the properties of level statistics are also discussed. The results show that the boson number N is a dominant factor. If N is small, both the interaction strengths of subgroups SOB(5) and SOBF(5)and the spin play important roles in the energy level statistics, however, along with the increase of N, the statistics distribution would tend to be in Poisson form.