在基于基础设施即服务(Infrastructure as a service, IaaS)的云服务模式下,精准的虚拟机能耗预测,对于在众多物理服务器之间进行虚拟机调度策略的制定具有十分重要的意义.针对基于传统的增量型极限学习机(Incremental extreme learning...在基于基础设施即服务(Infrastructure as a service, IaaS)的云服务模式下,精准的虚拟机能耗预测,对于在众多物理服务器之间进行虚拟机调度策略的制定具有十分重要的意义.针对基于传统的增量型极限学习机(Incremental extreme learning machine, I-ELM)的预测模型存在许多降低虚拟机能耗预测准确性和效率的冗余节点,在现有I-ELM模型中加入压缩动量项将网络训练误差反馈到隐含层的输出中使预测结果更逼近输出样本,能够减少I-ELM的冗余隐含层节点,从而加快I-ELM的网络收敛速度,提高I-ELM的泛化性能.展开更多
Extreme learning machine (ELM) is a learning algorithm for generalized single-hidden-layer feed-forward networks (SLFNs). In order to obtain a suitable network architecture, Incremental Extreme Learning Machine (...Extreme learning machine (ELM) is a learning algorithm for generalized single-hidden-layer feed-forward networks (SLFNs). In order to obtain a suitable network architecture, Incremental Extreme Learning Machine (I-ELM) is a sort of ELM constructing SLFNs by adding hidden nodes one by one. Although kinds of I-ELM-class algorithms were proposed to improve the convergence rate or to obtain minimal training error, they do not change the construction way of I-ELM or face the over-fitting risk. Making the testing error converge quickly and stably therefore becomes an important issue. In this paper, we proposed a new incremental ELM which is referred to as Length-Changeable Incremental Extreme Learning Machine (LCI-ELM). It allows more than one hidden node to be added to the network and the existing network will be regarded as a whole in output weights tuning. The output weights of newly added hidden nodes are determined using a partial error-minimizing method. We prove that an SLFN constructed using LCI-ELM has approximation capability on a universal compact input set as well as on a finite training set. Experimental results demonstrate that LCI-ELM achieves higher convergence rate as well as lower over-fitting risk than some competitive I-ELM-class algorithms.展开更多
文摘在基于基础设施即服务(Infrastructure as a service, IaaS)的云服务模式下,精准的虚拟机能耗预测,对于在众多物理服务器之间进行虚拟机调度策略的制定具有十分重要的意义.针对基于传统的增量型极限学习机(Incremental extreme learning machine, I-ELM)的预测模型存在许多降低虚拟机能耗预测准确性和效率的冗余节点,在现有I-ELM模型中加入压缩动量项将网络训练误差反馈到隐含层的输出中使预测结果更逼近输出样本,能够减少I-ELM的冗余隐含层节点,从而加快I-ELM的网络收敛速度,提高I-ELM的泛化性能.
基金This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 61673159 and 61370144, and the Natural Science Foundation of Hebei Province of China under Grant No. F2016202145.
文摘Extreme learning machine (ELM) is a learning algorithm for generalized single-hidden-layer feed-forward networks (SLFNs). In order to obtain a suitable network architecture, Incremental Extreme Learning Machine (I-ELM) is a sort of ELM constructing SLFNs by adding hidden nodes one by one. Although kinds of I-ELM-class algorithms were proposed to improve the convergence rate or to obtain minimal training error, they do not change the construction way of I-ELM or face the over-fitting risk. Making the testing error converge quickly and stably therefore becomes an important issue. In this paper, we proposed a new incremental ELM which is referred to as Length-Changeable Incremental Extreme Learning Machine (LCI-ELM). It allows more than one hidden node to be added to the network and the existing network will be regarded as a whole in output weights tuning. The output weights of newly added hidden nodes are determined using a partial error-minimizing method. We prove that an SLFN constructed using LCI-ELM has approximation capability on a universal compact input set as well as on a finite training set. Experimental results demonstrate that LCI-ELM achieves higher convergence rate as well as lower over-fitting risk than some competitive I-ELM-class algorithms.