期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于不同算法对抗样本的设计
1
作者
许晗
《黎明职业大学学报》
2024年第2期93-102,共10页
为了提高神经网络模型对样本攻击的防御能力,基于DeepFool,BIM,I-FGSM 3种算法设计了不同的对抗样本,并对其进行模型训练。经实验测试得到,DeepFool算法设计的对抗样本将准确率由91%下降至88%,BIM算法将准确率由80%下降至3%,I-FGSM算法...
为了提高神经网络模型对样本攻击的防御能力,基于DeepFool,BIM,I-FGSM 3种算法设计了不同的对抗样本,并对其进行模型训练。经实验测试得到,DeepFool算法设计的对抗样本将准确率由91%下降至88%,BIM算法将准确率由80%下降至3%,I-FGSM算法将准确率由94%下降至40.78%和58.58%。实验结果表明,基于3种算法设计的对抗样本均能实现有效攻击。
展开更多
关键词
对抗样本
DeepFool
算法
BIM
算法
i-fgsm算法
下载PDF
职称材料
题名
基于不同算法对抗样本的设计
1
作者
许晗
机构
黎明职业大学信息与电子工程学院
出处
《黎明职业大学学报》
2024年第2期93-102,共10页
文摘
为了提高神经网络模型对样本攻击的防御能力,基于DeepFool,BIM,I-FGSM 3种算法设计了不同的对抗样本,并对其进行模型训练。经实验测试得到,DeepFool算法设计的对抗样本将准确率由91%下降至88%,BIM算法将准确率由80%下降至3%,I-FGSM算法将准确率由94%下降至40.78%和58.58%。实验结果表明,基于3种算法设计的对抗样本均能实现有效攻击。
关键词
对抗样本
DeepFool
算法
BIM
算法
i-fgsm算法
Keywords
adversarial examples
DeepFool
BIM
i-fgsm
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于不同算法对抗样本的设计
许晗
《黎明职业大学学报》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部