I-doped titanium dioxide nanospheres (I-TNSs) were synthesized via a two-step hydrothermal synthesis route, their potential for the efficient utilization of visible light was evaluated. The prepared anatase-phase I-...I-doped titanium dioxide nanospheres (I-TNSs) were synthesized via a two-step hydrothermal synthesis route, their potential for the efficient utilization of visible light was evaluated. The prepared anatase-phase I-TNSs had a bimodal porous size distribution with a Brunauer-Emmett-Teller surface area of 76 m2/g, a crystallite size of approximately 14 nm calculated from X-ray diffraction data, and a remarkable absorption in the visible light region at wavelengths 〉 400 nm. The photocatalytic activity of the samples was evaluated by decoloration of Methyl Orange in aqueous solution under visible light irradiation in comparison to the iodine-doped TiO2 (I-TiO2). The I-TNSs showed higher photocatalytic efficiency compared with I-TiO2 after irradiation for 180 rain even though the latter had a much greater surface area (115 m2/g). It was concluded that the surface area was not the predominant factor determining photocatalytic activity, and that the good crystallization and bimodal porous nanosphere structure were favourable for photocatalysis.展开更多
基金supported by the National Natural Science Foundation of China (No.21076196,20977086)the National Basic Research Program (973) of China(No.2009CB421603)the Zhejiang Provincial Natural Science Foundation of China (No.Z5080207)
文摘I-doped titanium dioxide nanospheres (I-TNSs) were synthesized via a two-step hydrothermal synthesis route, their potential for the efficient utilization of visible light was evaluated. The prepared anatase-phase I-TNSs had a bimodal porous size distribution with a Brunauer-Emmett-Teller surface area of 76 m2/g, a crystallite size of approximately 14 nm calculated from X-ray diffraction data, and a remarkable absorption in the visible light region at wavelengths 〉 400 nm. The photocatalytic activity of the samples was evaluated by decoloration of Methyl Orange in aqueous solution under visible light irradiation in comparison to the iodine-doped TiO2 (I-TiO2). The I-TNSs showed higher photocatalytic efficiency compared with I-TiO2 after irradiation for 180 rain even though the latter had a much greater surface area (115 m2/g). It was concluded that the surface area was not the predominant factor determining photocatalytic activity, and that the good crystallization and bimodal porous nanosphere structure were favourable for photocatalysis.