为探究多比特量子算法在量子芯片和模拟器中的实现现状,分别在IBM量子芯片和模拟器上运行Grover搜索算法、量子随机行走算法以及量子傅里叶变换算法。针对2 bit Grover搜索算法和2 bit量子随机行走算法,分析测量次数对运行结果的影响并...为探究多比特量子算法在量子芯片和模拟器中的实现现状,分别在IBM量子芯片和模拟器上运行Grover搜索算法、量子随机行走算法以及量子傅里叶变换算法。针对2 bit Grover搜索算法和2 bit量子随机行走算法,分析测量次数对运行结果的影响并选用最高可模拟次数对量子芯片和模拟器的运算结果进行比对。设计并运行5 bit量子傅里叶变换算法和3 bit Grover搜索算法,分别采用IBM Q模拟器进行最高次数的模拟。实验结果表明,量子芯片测试结果并没有随测量次数的增加而优化,模拟器计算结果的准确度明显优于量子芯片。展开更多
文摘为探究多比特量子算法在量子芯片和模拟器中的实现现状,分别在IBM量子芯片和模拟器上运行Grover搜索算法、量子随机行走算法以及量子傅里叶变换算法。针对2 bit Grover搜索算法和2 bit量子随机行走算法,分析测量次数对运行结果的影响并选用最高可模拟次数对量子芯片和模拟器的运算结果进行比对。设计并运行5 bit量子傅里叶变换算法和3 bit Grover搜索算法,分别采用IBM Q模拟器进行最高次数的模拟。实验结果表明,量子芯片测试结果并没有随测量次数的增加而优化,模拟器计算结果的准确度明显优于量子芯片。