The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. ...The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary quhit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.展开更多
Classical simulations of quantum circuits are limited in both space and time when the qubit count is above 50, the realm where quantum supremacy reigns. However, recently, for the low depth circuit with more than 50 q...Classical simulations of quantum circuits are limited in both space and time when the qubit count is above 50, the realm where quantum supremacy reigns. However, recently, for the low depth circuit with more than 50 qubits, there are several methods of simulation proposed by teams at Google and IBM. Here,we present a scheme of simulation which can extract a large amount of measurement outcomes within a short time, achieving a 64-qubit simulation of a universal random circuit of depth 22 using a 128-node cluster, and 56-and 42-qubit circuits on a single PC. We also estimate that a 72-qubit circuit of depth 23 can be simulated in about 16 h on a supercomputer identical to that used by the IBM team. Moreover, the simulation processes are exceedingly separable, hence parallelizable, involving just a few inter-process communications. Our work enables simulating more qubits with less hardware burden and provides a new perspective for classical simulations.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2015CB921002)the National Natural Science Foundation of China (Grant Nos. 11175094, and 91221205)the Fund of Key Laboratory (Grant No. 9140C75010215ZK65001)
文摘The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary quhit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.
基金supported by the National Key Research and Development Program of China(2016YFA0301700)the National Natural Science Foundation of China(11625419)+1 种基金the Anhui Initiative in Quantum Information Technologies(AHY080000)supported by Yangzi Cloud Computing Data Centre and Gyrotech,Nanjing,China
文摘Classical simulations of quantum circuits are limited in both space and time when the qubit count is above 50, the realm where quantum supremacy reigns. However, recently, for the low depth circuit with more than 50 qubits, there are several methods of simulation proposed by teams at Google and IBM. Here,we present a scheme of simulation which can extract a large amount of measurement outcomes within a short time, achieving a 64-qubit simulation of a universal random circuit of depth 22 using a 128-node cluster, and 56-and 42-qubit circuits on a single PC. We also estimate that a 72-qubit circuit of depth 23 can be simulated in about 16 h on a supercomputer identical to that used by the IBM team. Moreover, the simulation processes are exceedingly separable, hence parallelizable, involving just a few inter-process communications. Our work enables simulating more qubits with less hardware burden and provides a new perspective for classical simulations.