We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The ...We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.展开更多
In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient ...In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient and reliable transmission with quality of service(QoS)guarantee for machinetype communication devices(MTCDs).Considering the IN in the industrial process,this paper establishes the multiuser multiple-input single-output(MU-MISO)orthogonal frequency division multiplexing(OFDM)system model,which combines transmitter and receiver design.Two precoding schemes are designed to improve communication effectiveness at the transmitter.More specifically,the precoder design scheme which combines semi-definite relaxation(SDR)with difference-of-two-convex-function(D.C.)iterative algorithm,is developed by utilizing the Dinkelbach method to improve the system effectiveness.To decrease the computational complexity,we devise the quadratic-based fractional programming(QFP)algorithm,which decouples the variables by using a quadratic transform method.On this basis,the IN mitigation scheme is studied to reduce the system error rate(SER)at the receiver.With the goal of improving the reliability of industrial wireless communications,we propose a hybrid nonlinear IN mitigation(HNINM)scheme and then derive its closed-form expression of SER.The simulation results show that the proposed QFP algorithm achieves superior performance while the HNINM scheme decreases the SER of industrial wireless communications.展开更多
The modern transportation system is increasingly developed during recent years.It is an effective solution to set the noise barriers to reduce the traffic noise pollution caused by different kinds of transportation sy...The modern transportation system is increasingly developed during recent years.It is an effective solution to set the noise barriers to reduce the traffic noise pollution caused by different kinds of transportation systems.Many deficiencies on concrete noise barriers and metal noise barriers with rivet structure can be eliminated by a new kind of noise barrier with no-riveted structure.The mechanical performance examination and acoustic performance test are conducted on the new-designed noise barrier with no-riveted structure.The results indicate that the maximum stress is 1.74 MPa and the maximum deformation is 1.04 mm with load acting on the unit plate.The noise reduction coefficient of this kind of no-riveted noise barrier unit plate is 0.75 and its noise insulation is 40 dB,which were conform to or superior to the standard requirements.Therefore,this new designed noise barrier meets the field application requirements of mechanical and acoustic performance,which demonstrates the noise barriers can be widely promoted.展开更多
A novel type of leakage current protector chip,implemented in the mixed-signal 0.6μm CMOS process,is presented. This chip has the advantages of low power dissipation (10mW), accurate protection control based on dig...A novel type of leakage current protector chip,implemented in the mixed-signal 0.6μm CMOS process,is presented. This chip has the advantages of low power dissipation (10mW), accurate protection control based on digital response delay time and integration of multi-functions such as leakage current/over-voltage/over-load detection and protection,auto switch-on and so forth. Additionally, the chip is programmable to suit different three-level protection applications with a high anti-interference ability.展开更多
The data recorded during the site survey in the Zhangzhou area in Fujian Province between October 23, 2007 and December 3, 2007 was analyzed. The main methods adopted for the noise level of this area are the noise roo...The data recorded during the site survey in the Zhangzhou area in Fujian Province between October 23, 2007 and December 3, 2007 was analyzed. The main methods adopted for the noise level of this area are the noise root mean square( RMS),noise power spectrum density and noise coherency function. The results indicate that the noise levels of the survey sites are higher in the 1 s-10 s periods,which is the main frequency band of preliminary microseism,and also,two main noise sources were found in 1. 5 Hz and around 5 Hz. According to arithmetic,the direction and frequency band of the noise source were analyzed and academic proofs were presented. At last,we found that the noise source in 1. 5 Hz was made by the water wave aroused by the wind in the reservoir region and the noise source around 5 Hz was made by the power station in the northeast direction.展开更多
Statistical energy analysis (SEA) is an effective method for predicting high frequency vibro-acoustic performance of automobiles. A full vehicle SEA model is presented for interior noise reduction. It is composed of a...Statistical energy analysis (SEA) is an effective method for predicting high frequency vibro-acoustic performance of automobiles. A full vehicle SEA model is presented for interior noise reduction. It is composed of a number of subsystems based on a 3D model with all parameters for each subsystem. The excitation inputs are measured through road tests in different conditions,including inputs from the engine vibration and the sound pressure of the engine bay. The accuracy in high frequency of SEA model is validated,by comparing the analysis results with the testing pressure level data at driver's right ear. Noise contribution and sensitivity of key subsystems are analyzed. Finally,the effectiveness of noise reduction is verified. Based on the SEA model,an approach combining test and simulation is proposed for the noise vibration and harshness (NVH) design in vehicle development. It contains building the SEA model,testing for subsystem parameter identification,validating the simulation model,identifying subsystem power inputs,analyzing the design sensitivity. An example is given to demonstrate the interior noise reduction in high frequency.展开更多
Noise reduction program design is an effective approach that relies on efficient noise prediction for reducing ground noise during flight.The existing noise prediction methods have the limitations of being computation...Noise reduction program design is an effective approach that relies on efficient noise prediction for reducing ground noise during flight.The existing noise prediction methods have the limitations of being computationally expensive or only applicable to far-fields.In this paper,a High-Efficiency Prediction Method(HEPM)for helicopter global/ground noise based on near-field acoustic holography is proposed.The HEPM can predict the global noise based on acoustic modal analysis and has the advantages of high prediction accuracy and low time cost.The process is given as follows:firstly,the rotor noise on the holographic surface in the specified flight is obtained by simulations or experiments.Secondly,the global noise model,which maps time-domain noise to acoustic modes,is established based on near-field acoustic holography and Fourier acoustic analysis methods.Finally,combined with acoustic modal amplitude,the model established enables efficiently predicting the global/ground noise in the corresponding flight state.To verify the accuracy of the prediction method,a simulation study is conducted in hovering and forward flight states using a model helicopter with a 2-meter rotor and Rotor Body Interaction(ROBIN)fuselage.The comparison of HEPM with numerical results shows that the average prediction errors of the global and ground noise are less than 0.3 dB and 0.2 dB,respectively.For a region containing 100000 observers,the computation time of the HEPM is only one-fifth of that of the acoustic hemisphere method,demonstrating the rapidity of the proposed method.展开更多
Recent studies using BSIM3 models have suggested that noise depends on the transconductance-to-drain ratio gm/ID of a transistor. However, to the best of our knowledge, no experimental result demonstrating gm/ID depen...Recent studies using BSIM3 models have suggested that noise depends on the transconductance-to-drain ratio gm/ID of a transistor. However, to the best of our knowledge, no experimental result demonstrating gm/ID dependent noise previously observed in simulation is available in the literature. This paper examines the underlying principles that make it possible to analyze noise using gm/ID based noise analysis. Qualitative discussion of normalized noise is presented along with experimental results from a 130 nm CMOS process. A close examination of the experimental results reveals that the device noise is width independent from 1 Hz to 10 kHz. Moreover, noise increases as gm/ID is reduced. The experiment observation that noise is width independent makes it possible for circuit designers to generate normalized parameters that are used to study noise intuitively and accurately.展开更多
Flap side-edge noise is a significant noise source for airplane at takeoff and landing stages. The generation mechanism of flap side-edge noise is analyzed by numerical simulation on unsteady flow field using Very Lar...Flap side-edge noise is a significant noise source for airplane at takeoff and landing stages. The generation mechanism of flap side-edge noise is analyzed by numerical simulation on unsteady flow field using Very Large Eddy Simulation (VLES). Two kinds of flap side-edge shape modifications are proposed, and their frequency spectrum and directivity of far-field noise are compared with the baseline configuration using permeable integral surface Ffowcs Williams and Hawkings (FW-H) acoustic analogy method to investigate their effects on noise reduction. Via the numerical simulation of flow field and acoustic field, it proves that the flap side-edge noise is broadband noise in nature. The different shapes of flap side-edge change the pattern of flow field, vortex structures and the development of vortex, thus having influences on noise source distributions and characteristics of far-field noise. The result shows that at the given 5° angle of attack, the proposed flap side-edge shape modifications can reduce the overall sound pressure level (OASPL) by 1 to 2 dB without decreasing the lift and drag aerodynamic performances.展开更多
Based on the demand on efficient axial-flow blast with low noise and energy saving, a blade was designed through the application of the unequal work distribution principle and the exponential twisted camber was used t...Based on the demand on efficient axial-flow blast with low noise and energy saving, a blade was designed through the application of the unequal work distribution principle and the exponential twisted camber was used to shape blades. Then, the hydrodynamic characteristics of blades were studied and the strengths and vibrations of blades and hydro-dynamic noise of blast were analyzed. Furthermore, the software of optimization design of axial-flow blast was developed. Finally, the HMF-T40No.20 axial-flow blast used in large textile conditioner system of cotton spinning industry was designed, which could meet the required total safety and environmental requirements as the corresponding test demonstrates. The study is beneficial to designing axial-flow blast.展开更多
Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with ...Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased.Low noise wind turbine design is becoming more and more important as noise is spreading more adverse effect of wind turbine to public.This paper demonstrates the design of 10 kW class wind turbines,each of three blades,a rotor diameter 6.4 m,a rated rotating speed 200 r/min and a rated wind speed 10 m/s.The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade is trailing edge noise from the outer 25% of the blade.Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at 1.02×106 with a lift performance,which is resistant to surface contamination and turbulence intensity.The objectives in the design process are to reduce noise emission,while sustaining high aerodynamic efficiency.Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al.and Lowson associated with typical wind turbine operation conditions.During the airfoil redesign process,the aerodynamic performance is analyzed to reduce the wind turbine power loss.The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis.Therefore,the new optimized airfoil showing 2.9 dB reductions of total sound pressure level(SPL) and higher aerodynamic performance are achieved.展开更多
The aerodynamic noise generated by the centrifugal fan used in the air conditioner is related to the comfort of human living and working,which can be controlled by using the bionic design and optimization of key compo...The aerodynamic noise generated by the centrifugal fan used in the air conditioner is related to the comfort of human living and working,which can be controlled by using the bionic design and optimization of key components of centrifugal fan.Inspired by the non-smooth leading edge of long-eared owl wing,eight kinds of volute tongues are proposed to reduce the aerodynamic noise of a centrifugal fan.The flow and sound characteristics are numerically investigated by incorporating computational fluid dynamics and computational aero-acoustics.The optimal result exhibits a noise reduction of up to 1.5 dB with a slight increase in mass flow rate.The acoustic characteristics,with respect to the sound pressure level,power spectral density,and sound directivity are discussed.The time-domain,frequency-domain,and root mean square values of pressure fluctuation are monitored and analyzed to assess the unsteady flow interaction between the volute tongue and impeller.The intensity and scale of vortices in the centrifugal fan are suppressed in the upstream and downstream of the bionic volute tongue,and the turbulence effect on the surface of the volute tongue becomes even and weak.展开更多
A low noise multi-channel readout integrated circuit (IC) which converts a detector current to analog voltage for X-ray cargo inspection is described. The readout IC provides 32 channels of a circuit having a maxi- ...A low noise multi-channel readout integrated circuit (IC) which converts a detector current to analog voltage for X-ray cargo inspection is described. The readout IC provides 32 channels of a circuit having a maxi- mum dynamic range of 15 bit and is comprised of integrator gain selection, timing generator, shift register chain, integrator array, sample/hold (S/H) stage amplifier etc. and occupies a die area of 2.7 × 13.9 mm2. It operates at It was fabricated using 0.6 μm standard CMOS process, 1 MHz, consumes 100 mW from a 5 V supply and 4.096 V as reference, and has a measured output noise of 85 μVms on 63 pF of integrator gain capacitance and 440 pF of photodiode terminal capacitance so that steel plate penetration thickness can reach more than 400 mm.展开更多
In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic opt...In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic optimization formulations minimizing the vibration acceleration of the non-pressure hull on the restraining condition of the gross weight of the ship cabin were established: 1) dynamic optimization of the sectional dimensions of the rigid vibration isolation mass in the composite brace; 2) dynamic optimization of the arranging position of the rigid vibration isolation mass. Through the optimization results, sectional dimensions and the arranging position of the rigid vibration isolation mass with better performance in reducing vibration were gained, and some reference was provided for practical engineering designs as well as enrichment of the design method of a novel ship vibration-isolation brace.展开更多
Through analysis on characteristic of highway traffic noise and pollution-treating and noise-reducing mechanism,the paper had illustrated feasibility and advantage to reduce traffic noise along highway by making use o...Through analysis on characteristic of highway traffic noise and pollution-treating and noise-reducing mechanism,the paper had illustrated feasibility and advantage to reduce traffic noise along highway by making use of plant acoustic barrier,introduced design model and methods of plant acoustic barrier,and principles and scope for plants' selection.On this basis,by taking K37+100-K37+250 section of Yunnan Chuda Highway for example,application of plant acoustic barrier had been studied,general situation and design schemes of pilot project analyzed,and some matters needing attention proposed.Based on the analysis of a large amount of statistical data and researches on pilot project of noise-reducing by plants along Yunnan Chuda Highway,it hoped to provide reference for similar engineering projects.展开更多
A top-down design methodology is proposed for the design of TFT-LCD one-chip driver ICs,and a 260k color, 176RGB× 220-dot TFT-LCD one-chip driver IC is successfully developed with silicon verification. This IC is...A top-down design methodology is proposed for the design of TFT-LCD one-chip driver ICs,and a 260k color, 176RGB× 220-dot TFT-LCD one-chip driver IC is successfully developed with silicon verification. This IC is a typical mixed-signal VLSI and is implemented by a 0.18μm HV CMOS process. The static power dissipation is about 5mW for 260k color display mode,and the settling time of the output grayscale voltages within 0.2% error is less than 26μs.展开更多
Aerodynamic noise is the main problem restricting its development nowadays in green energy,ocean engineering and aerospace engineering.In order to limit the aerodynamic noise of an airfoil structure,a method is propos...Aerodynamic noise is the main problem restricting its development nowadays in green energy,ocean engineering and aerospace engineering.In order to limit the aerodynamic noise of an airfoil structure,a method is proposed in this paper by designing low noise airfoils.This method optimized the aerodynamic noise of two-dimensional airfoil,and considered the aerodynamic performance of the airfoil at the same time.Based on Joukowski conformal transformation,airfoil geometry is parameterized firstly.Then,the optimization model taking the lift-to-drag ratio and airfoil self-noise as the design objective,is established to modify the airfoil by active set algorithm until the airfoil can satisfy the design condition.Finally,the noise of the optimized airfoil is verified according to the prediction theory of airfoil noise.Moreover,the relationship between airfoil geometry and noise is analyzed.The results show that the lift-to-drag ratio of the optimized airfoil increased,and the noise also decreased.Thus,the optimization method can be used to address special design of low-noise airfoil.Besides,the optimization method in this paper can provide reference for improving lift-to-drag ratio and reducing noise of the airfoil in aircraft and submarine rudder system.展开更多
Several main steps of internal combustion engine block structure dynamic design,such as model set up,structure dynamic response analysis,optimizing design and vibration and noise control,are discussed for the type of...Several main steps of internal combustion engine block structure dynamic design,such as model set up,structure dynamic response analysis,optimizing design and vibration and noise control,are discussed for the type of EQ6100 gasoline engine block展开更多
文摘We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.
基金supported in part by the National Natural Science Foundation of China under Grant 62071472in part the Program for“Industrial Io T and Emergency Collaboration”Innovative Research Team in CUMT(No.2020ZY002)。
文摘In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient and reliable transmission with quality of service(QoS)guarantee for machinetype communication devices(MTCDs).Considering the IN in the industrial process,this paper establishes the multiuser multiple-input single-output(MU-MISO)orthogonal frequency division multiplexing(OFDM)system model,which combines transmitter and receiver design.Two precoding schemes are designed to improve communication effectiveness at the transmitter.More specifically,the precoder design scheme which combines semi-definite relaxation(SDR)with difference-of-two-convex-function(D.C.)iterative algorithm,is developed by utilizing the Dinkelbach method to improve the system effectiveness.To decrease the computational complexity,we devise the quadratic-based fractional programming(QFP)algorithm,which decouples the variables by using a quadratic transform method.On this basis,the IN mitigation scheme is studied to reduce the system error rate(SER)at the receiver.With the goal of improving the reliability of industrial wireless communications,we propose a hybrid nonlinear IN mitigation(HNINM)scheme and then derive its closed-form expression of SER.The simulation results show that the proposed QFP algorithm achieves superior performance while the HNINM scheme decreases the SER of industrial wireless communications.
基金supported by the National Natural Science Foundation of China (No. 51768014).
文摘The modern transportation system is increasingly developed during recent years.It is an effective solution to set the noise barriers to reduce the traffic noise pollution caused by different kinds of transportation systems.Many deficiencies on concrete noise barriers and metal noise barriers with rivet structure can be eliminated by a new kind of noise barrier with no-riveted structure.The mechanical performance examination and acoustic performance test are conducted on the new-designed noise barrier with no-riveted structure.The results indicate that the maximum stress is 1.74 MPa and the maximum deformation is 1.04 mm with load acting on the unit plate.The noise reduction coefficient of this kind of no-riveted noise barrier unit plate is 0.75 and its noise insulation is 40 dB,which were conform to or superior to the standard requirements.Therefore,this new designed noise barrier meets the field application requirements of mechanical and acoustic performance,which demonstrates the noise barriers can be widely promoted.
文摘A novel type of leakage current protector chip,implemented in the mixed-signal 0.6μm CMOS process,is presented. This chip has the advantages of low power dissipation (10mW), accurate protection control based on digital response delay time and integration of multi-functions such as leakage current/over-voltage/over-load detection and protection,auto switch-on and so forth. Additionally, the chip is programmable to suit different three-level protection applications with a high anti-interference ability.
基金sponsored by the Earthquake Monitoring System Operational Program of Department of Earthquake Monitoring and Prediction,CEA,in 2016(2200404)
文摘The data recorded during the site survey in the Zhangzhou area in Fujian Province between October 23, 2007 and December 3, 2007 was analyzed. The main methods adopted for the noise level of this area are the noise root mean square( RMS),noise power spectrum density and noise coherency function. The results indicate that the noise levels of the survey sites are higher in the 1 s-10 s periods,which is the main frequency band of preliminary microseism,and also,two main noise sources were found in 1. 5 Hz and around 5 Hz. According to arithmetic,the direction and frequency band of the noise source were analyzed and academic proofs were presented. At last,we found that the noise source in 1. 5 Hz was made by the water wave aroused by the wind in the reservoir region and the noise source around 5 Hz was made by the power station in the northeast direction.
基金Sponsored by the Key Project of the Development of Science and Technology of Jilin Province (20040332-1)the National"863"Project(2006AA110102-3)
文摘Statistical energy analysis (SEA) is an effective method for predicting high frequency vibro-acoustic performance of automobiles. A full vehicle SEA model is presented for interior noise reduction. It is composed of a number of subsystems based on a 3D model with all parameters for each subsystem. The excitation inputs are measured through road tests in different conditions,including inputs from the engine vibration and the sound pressure of the engine bay. The accuracy in high frequency of SEA model is validated,by comparing the analysis results with the testing pressure level data at driver's right ear. Noise contribution and sensitivity of key subsystems are analyzed. Finally,the effectiveness of noise reduction is verified. Based on the SEA model,an approach combining test and simulation is proposed for the noise vibration and harshness (NVH) design in vehicle development. It contains building the SEA model,testing for subsystem parameter identification,validating the simulation model,identifying subsystem power inputs,analyzing the design sensitivity. An example is given to demonstrate the interior noise reduction in high frequency.
基金supported by the National Key Research and Development Program of China(No.2021YFB3400100).
文摘Noise reduction program design is an effective approach that relies on efficient noise prediction for reducing ground noise during flight.The existing noise prediction methods have the limitations of being computationally expensive or only applicable to far-fields.In this paper,a High-Efficiency Prediction Method(HEPM)for helicopter global/ground noise based on near-field acoustic holography is proposed.The HEPM can predict the global noise based on acoustic modal analysis and has the advantages of high prediction accuracy and low time cost.The process is given as follows:firstly,the rotor noise on the holographic surface in the specified flight is obtained by simulations or experiments.Secondly,the global noise model,which maps time-domain noise to acoustic modes,is established based on near-field acoustic holography and Fourier acoustic analysis methods.Finally,combined with acoustic modal amplitude,the model established enables efficiently predicting the global/ground noise in the corresponding flight state.To verify the accuracy of the prediction method,a simulation study is conducted in hovering and forward flight states using a model helicopter with a 2-meter rotor and Rotor Body Interaction(ROBIN)fuselage.The comparison of HEPM with numerical results shows that the average prediction errors of the global and ground noise are less than 0.3 dB and 0.2 dB,respectively.For a region containing 100000 observers,the computation time of the HEPM is only one-fifth of that of the acoustic hemisphere method,demonstrating the rapidity of the proposed method.
文摘Recent studies using BSIM3 models have suggested that noise depends on the transconductance-to-drain ratio gm/ID of a transistor. However, to the best of our knowledge, no experimental result demonstrating gm/ID dependent noise previously observed in simulation is available in the literature. This paper examines the underlying principles that make it possible to analyze noise using gm/ID based noise analysis. Qualitative discussion of normalized noise is presented along with experimental results from a 130 nm CMOS process. A close examination of the experimental results reveals that the device noise is width independent from 1 Hz to 10 kHz. Moreover, noise increases as gm/ID is reduced. The experiment observation that noise is width independent makes it possible for circuit designers to generate normalized parameters that are used to study noise intuitively and accurately.
文摘Flap side-edge noise is a significant noise source for airplane at takeoff and landing stages. The generation mechanism of flap side-edge noise is analyzed by numerical simulation on unsteady flow field using Very Large Eddy Simulation (VLES). Two kinds of flap side-edge shape modifications are proposed, and their frequency spectrum and directivity of far-field noise are compared with the baseline configuration using permeable integral surface Ffowcs Williams and Hawkings (FW-H) acoustic analogy method to investigate their effects on noise reduction. Via the numerical simulation of flow field and acoustic field, it proves that the flap side-edge noise is broadband noise in nature. The different shapes of flap side-edge change the pattern of flow field, vortex structures and the development of vortex, thus having influences on noise source distributions and characteristics of far-field noise. The result shows that at the given 5° angle of attack, the proposed flap side-edge shape modifications can reduce the overall sound pressure level (OASPL) by 1 to 2 dB without decreasing the lift and drag aerodynamic performances.
文摘Based on the demand on efficient axial-flow blast with low noise and energy saving, a blade was designed through the application of the unequal work distribution principle and the exponential twisted camber was used to shape blades. Then, the hydrodynamic characteristics of blades were studied and the strengths and vibrations of blades and hydro-dynamic noise of blast were analyzed. Furthermore, the software of optimization design of axial-flow blast was developed. Finally, the HMF-T40No.20 axial-flow blast used in large textile conditioner system of cotton spinning industry was designed, which could meet the required total safety and environmental requirements as the corresponding test demonstrates. The study is beneficial to designing axial-flow blast.
基金supported by New and Renewable Energy R&D Program (Grant No. 2009T100100231) under Ministry of Knowledge and Economy,Republic of Korea
文摘Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased.Low noise wind turbine design is becoming more and more important as noise is spreading more adverse effect of wind turbine to public.This paper demonstrates the design of 10 kW class wind turbines,each of three blades,a rotor diameter 6.4 m,a rated rotating speed 200 r/min and a rated wind speed 10 m/s.The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade is trailing edge noise from the outer 25% of the blade.Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at 1.02×106 with a lift performance,which is resistant to surface contamination and turbulence intensity.The objectives in the design process are to reduce noise emission,while sustaining high aerodynamic efficiency.Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al.and Lowson associated with typical wind turbine operation conditions.During the airfoil redesign process,the aerodynamic performance is analyzed to reduce the wind turbine power loss.The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis.Therefore,the new optimized airfoil showing 2.9 dB reductions of total sound pressure level(SPL) and higher aerodynamic performance are achieved.
基金The authors gratefully thank the financial support provided by the National Natural Science Foundation of China(No.51676152).
文摘The aerodynamic noise generated by the centrifugal fan used in the air conditioner is related to the comfort of human living and working,which can be controlled by using the bionic design and optimization of key components of centrifugal fan.Inspired by the non-smooth leading edge of long-eared owl wing,eight kinds of volute tongues are proposed to reduce the aerodynamic noise of a centrifugal fan.The flow and sound characteristics are numerically investigated by incorporating computational fluid dynamics and computational aero-acoustics.The optimal result exhibits a noise reduction of up to 1.5 dB with a slight increase in mass flow rate.The acoustic characteristics,with respect to the sound pressure level,power spectral density,and sound directivity are discussed.The time-domain,frequency-domain,and root mean square values of pressure fluctuation are monitored and analyzed to assess the unsteady flow interaction between the volute tongue and impeller.The intensity and scale of vortices in the centrifugal fan are suppressed in the upstream and downstream of the bionic volute tongue,and the turbulence effect on the surface of the volute tongue becomes even and weak.
基金Project supported by the Beijing DT Electronic Technology Co.,Ltd.the National Natural Science Foundation of China(No.60976028)
文摘A low noise multi-channel readout integrated circuit (IC) which converts a detector current to analog voltage for X-ray cargo inspection is described. The readout IC provides 32 channels of a circuit having a maxi- mum dynamic range of 15 bit and is comprised of integrator gain selection, timing generator, shift register chain, integrator array, sample/hold (S/H) stage amplifier etc. and occupies a die area of 2.7 × 13.9 mm2. It operates at It was fabricated using 0.6 μm standard CMOS process, 1 MHz, consumes 100 mW from a 5 V supply and 4.096 V as reference, and has a measured output noise of 85 μVms on 63 pF of integrator gain capacitance and 440 pF of photodiode terminal capacitance so that steel plate penetration thickness can reach more than 400 mm.
基金Supported by the Shipbuilding Industry of National Defense Science and Technology Research Projects in Advance (153010110031)
文摘In considering the theory of structural dynamic optimization design, a design method of the structural style of ship composite brace with rigid vibration isolation mass was studied. Two kinds of structural dynamic optimization formulations minimizing the vibration acceleration of the non-pressure hull on the restraining condition of the gross weight of the ship cabin were established: 1) dynamic optimization of the sectional dimensions of the rigid vibration isolation mass in the composite brace; 2) dynamic optimization of the arranging position of the rigid vibration isolation mass. Through the optimization results, sectional dimensions and the arranging position of the rigid vibration isolation mass with better performance in reducing vibration were gained, and some reference was provided for practical engineering designs as well as enrichment of the design method of a novel ship vibration-isolation brace.
基金Supported by Scientific and Technological Project of Transportation Construction of Yunnan Province~~
文摘Through analysis on characteristic of highway traffic noise and pollution-treating and noise-reducing mechanism,the paper had illustrated feasibility and advantage to reduce traffic noise along highway by making use of plant acoustic barrier,introduced design model and methods of plant acoustic barrier,and principles and scope for plants' selection.On this basis,by taking K37+100-K37+250 section of Yunnan Chuda Highway for example,application of plant acoustic barrier had been studied,general situation and design schemes of pilot project analyzed,and some matters needing attention proposed.Based on the analysis of a large amount of statistical data and researches on pilot project of noise-reducing by plants along Yunnan Chuda Highway,it hoped to provide reference for similar engineering projects.
文摘A top-down design methodology is proposed for the design of TFT-LCD one-chip driver ICs,and a 260k color, 176RGB× 220-dot TFT-LCD one-chip driver IC is successfully developed with silicon verification. This IC is a typical mixed-signal VLSI and is implemented by a 0.18μm HV CMOS process. The static power dissipation is about 5mW for 260k color display mode,and the settling time of the output grayscale voltages within 0.2% error is less than 26μs.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK20190871)the National Natural Science Foundation of China(11672261)。
文摘Aerodynamic noise is the main problem restricting its development nowadays in green energy,ocean engineering and aerospace engineering.In order to limit the aerodynamic noise of an airfoil structure,a method is proposed in this paper by designing low noise airfoils.This method optimized the aerodynamic noise of two-dimensional airfoil,and considered the aerodynamic performance of the airfoil at the same time.Based on Joukowski conformal transformation,airfoil geometry is parameterized firstly.Then,the optimization model taking the lift-to-drag ratio and airfoil self-noise as the design objective,is established to modify the airfoil by active set algorithm until the airfoil can satisfy the design condition.Finally,the noise of the optimized airfoil is verified according to the prediction theory of airfoil noise.Moreover,the relationship between airfoil geometry and noise is analyzed.The results show that the lift-to-drag ratio of the optimized airfoil increased,and the noise also decreased.Thus,the optimization method can be used to address special design of low-noise airfoil.Besides,the optimization method in this paper can provide reference for improving lift-to-drag ratio and reducing noise of the airfoil in aircraft and submarine rudder system.
文摘Several main steps of internal combustion engine block structure dynamic design,such as model set up,structure dynamic response analysis,optimizing design and vibration and noise control,are discussed for the type of EQ6100 gasoline engine block