Thermodynamic processes of a system involving a floe and a small lead in the central Arctic were investigated during the ice-camp period of the third Chinese National Arctic Research Expedition from 20 to 28 August, 2...Thermodynamic processes of a system involving a floe and a small lead in the central Arctic were investigated during the ice-camp period of the third Chinese National Arctic Research Expedition from 20 to 28 August, 2008. The measurements included surface air temperatures above the floe, spectral albedo of the lead, seawater temperatures in the lead and under the ice cover, and the lateral and bottom mass balance of the floe. The surface air temperature at 1.15 m remained below 0~Cthroughout the observation period and sea ice had commenced its annual cycle of growth in response to autumn cooling during the study. The surface of the lead was frozen by 23 August, after which the spectral albedo of the thin-ice-covered lead in the band of 320-950 nm was 0.46 -0.03, the seawater temperatures both in the lead and under the ice cover, as well as the vertical seawater-temperature gradient in the lead decreased gradually, and the oceanic heat under the ice was maintained at a low level approaching 0 W/m2. By the end of the measurement, the thickness of the investigated floe had reached its annual minimum, while the lateral of the floe was still in the melting phase, with a mean melting rate of 1.0±0.3 cm/d during the measurement, responding to an equivalent latent heat flux of 21 ±6 W/m2. The lateral melting of the floe had made a more significant contribution to the sea-ice mass balance than the surface and bottom melting in the end of August.展开更多
Energy and resources including coal, oil, and gas are in demand all over the world. Because these resources near the earth's surface have been exploited for many years, the extraction depth has increased.As mining...Energy and resources including coal, oil, and gas are in demand all over the world. Because these resources near the earth's surface have been exploited for many years, the extraction depth has increased.As mining shafts in the coal extraction process become deeper, especially in western China, an artificial freezing method is used and is concentrated in the fractured rock mass. The frost-heaving pressure(FHP)is directly related to the degree of damage of the fractured rock mass. This paper is focused on FHP during the freezing process, with emphasis on the frost-heaving phenomenon in engineering materials. A review of the frost phenomenon in the geotechnical engineering literature indicates that:(1) During the soil freezing process, the ice content that is influenced by unfrozen water and the freezing rate are the determining factors of FHP;(2) During the freezing process of rock and other porous media, the resulting cracks should be considered because the FHP may damage the crack structure;(3) The FHP in a joint rock mass is analyzed by the joint deformation in field and experimental tests and can be simulated by the equivalent expansion method including water migration and joint deformation.展开更多
This paper reports on the fabrication and sensing characteristics of Polyimide-based humidity sensor,based on that,a new integrated circuit of humidity measurement has been designed.It is a novel capacitive-type syste...This paper reports on the fabrication and sensing characteristics of Polyimide-based humidity sensor,based on that,a new integrated circuit of humidity measurement has been designed.It is a novel capacitive-type systems on a chip structure using the MEMS process.The results show that the new sensor presents sensing characteristics over a humidity range from 10%~70% RH at 20℃,and the sensor is able to fabricated together with ICs technology.The result shows that integration of humidity sensor with integrated circuit of humidity measurement is considerably easier when they are built in sensing groove.The appeal of a new structure like this brings the possibility of applications that would require the flexibility of simple screen printing.展开更多
After post-silicidation annealing at various temperatures for 30 min, abnormal oxidation and agglomeration in nickel silicide and nickel germanosilicide are investigated under different conditions of NiSi, with As-, I...After post-silicidation annealing at various temperatures for 30 min, abnormal oxidation and agglomeration in nickel silicide and nickel germanosilicide are investigated under different conditions of NiSi, with As-, In-, and Sb-doped Si substrates of nickel germanosilicide without any dopants. The NiSi thickness, dopant species, doping concentration, and silicide process conditions are dominant factors for abnormal oxidation and NiSi agglomeration. Larger dopants than Si, thinner NiSi thickness and SiGe suhstrates, and higher dopant concentrations promote abnormal oxidation and agglomeration.展开更多
基金supported by the National Natural Science Foundation of China (Grant no. 40930848)the Norwegian Research Council (AMORA, 193592/S30)+1 种基金the China Postdoctoral Science Foundation (Grant no. 20100470400)the International Cooperation Project of the Chinese Arctic and Antarctic Administration, SOA (Grant no. IC2010007)
文摘Thermodynamic processes of a system involving a floe and a small lead in the central Arctic were investigated during the ice-camp period of the third Chinese National Arctic Research Expedition from 20 to 28 August, 2008. The measurements included surface air temperatures above the floe, spectral albedo of the lead, seawater temperatures in the lead and under the ice cover, and the lateral and bottom mass balance of the floe. The surface air temperature at 1.15 m remained below 0~Cthroughout the observation period and sea ice had commenced its annual cycle of growth in response to autumn cooling during the study. The surface of the lead was frozen by 23 August, after which the spectral albedo of the thin-ice-covered lead in the band of 320-950 nm was 0.46 -0.03, the seawater temperatures both in the lead and under the ice cover, as well as the vertical seawater-temperature gradient in the lead decreased gradually, and the oceanic heat under the ice was maintained at a low level approaching 0 W/m2. By the end of the measurement, the thickness of the investigated floe had reached its annual minimum, while the lateral of the floe was still in the melting phase, with a mean melting rate of 1.0±0.3 cm/d during the measurement, responding to an equivalent latent heat flux of 21 ±6 W/m2. The lateral melting of the floe had made a more significant contribution to the sea-ice mass balance than the surface and bottom melting in the end of August.
基金financial assistance provided by the National Natural Science Foundation of China (Nos. B14021 and 51304209)the Science Foundation of Jiangsu (No. 16KJB580014)
文摘Energy and resources including coal, oil, and gas are in demand all over the world. Because these resources near the earth's surface have been exploited for many years, the extraction depth has increased.As mining shafts in the coal extraction process become deeper, especially in western China, an artificial freezing method is used and is concentrated in the fractured rock mass. The frost-heaving pressure(FHP)is directly related to the degree of damage of the fractured rock mass. This paper is focused on FHP during the freezing process, with emphasis on the frost-heaving phenomenon in engineering materials. A review of the frost phenomenon in the geotechnical engineering literature indicates that:(1) During the soil freezing process, the ice content that is influenced by unfrozen water and the freezing rate are the determining factors of FHP;(2) During the freezing process of rock and other porous media, the resulting cracks should be considered because the FHP may damage the crack structure;(3) The FHP in a joint rock mass is analyzed by the joint deformation in field and experimental tests and can be simulated by the equivalent expansion method including water migration and joint deformation.
基金This work was supported by National Natural Science Foundation of China, Under Grant No.(60676044)
文摘This paper reports on the fabrication and sensing characteristics of Polyimide-based humidity sensor,based on that,a new integrated circuit of humidity measurement has been designed.It is a novel capacitive-type systems on a chip structure using the MEMS process.The results show that the new sensor presents sensing characteristics over a humidity range from 10%~70% RH at 20℃,and the sensor is able to fabricated together with ICs technology.The result shows that integration of humidity sensor with integrated circuit of humidity measurement is considerably easier when they are built in sensing groove.The appeal of a new structure like this brings the possibility of applications that would require the flexibility of simple screen printing.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61176101)the "Zijing Program Foundation"of Zhejiang Universitythe Natural Science Foundation of Zhejiang Province for Oversea Returners
文摘After post-silicidation annealing at various temperatures for 30 min, abnormal oxidation and agglomeration in nickel silicide and nickel germanosilicide are investigated under different conditions of NiSi, with As-, In-, and Sb-doped Si substrates of nickel germanosilicide without any dopants. The NiSi thickness, dopant species, doping concentration, and silicide process conditions are dominant factors for abnormal oxidation and NiSi agglomeration. Larger dopants than Si, thinner NiSi thickness and SiGe suhstrates, and higher dopant concentrations promote abnormal oxidation and agglomeration.