In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and econo...Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.展开更多
As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the po...As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.展开更多
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金funded through the support of the Swedish Transport Administration through Better Interactions in Geotechnics(BIG)the Rock engineering Research Foundation(BeFo)Tyrens AB。
文摘Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.
基金supported by the National Natural Science Foundation of China with Grants 61771289 and 61832012the Natural Science Foundation of Shandong Province with Grants ZR2021QF050 and ZR2021MF075+3 种基金Shandong Natural Science Foundation Major Basic Research with Grant ZR2019ZD10Shandong Key Research and Development Program with Grant 2019GGX1050Shandong Major Agricultural Application Technology Innovation Project with Grant SD2019NJ007National Natural Science Foundation of Shandong Province Grants ZR2022MF304.
文摘As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.