期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进鸡群算法的静止无功补偿器模型参数辨识方法 被引量:16
1
作者 聂永辉 张春雷 +2 位作者 高磊 赵妍 王明超 《电网技术》 EI CSCD 北大核心 2019年第2期731-738,共8页
为获取准确的静止无功补偿器模型参数以满足电力系统日益精细化的仿真要求,提出一种基于改进鸡群算法的静止无功补偿器模型参数辨识方法。首先建立考虑各环节特性的静止无功补偿器数学模型;然后对鸡群算法进行改进,并应用于静止无功补... 为获取准确的静止无功补偿器模型参数以满足电力系统日益精细化的仿真要求,提出一种基于改进鸡群算法的静止无功补偿器模型参数辨识方法。首先建立考虑各环节特性的静止无功补偿器数学模型;然后对鸡群算法进行改进,并应用于静止无功补偿器模型参数辨识;最后,针对多参数同时辨识引起的辨识结果不准确问题,提出一种基于参数敏感度的静止无功补偿器模型参数逐步辨识方法,为准确辨识静止无功补偿器模型参数提供了新的辨识策略。算例结果证明了所提方法的有效性和准确性。 展开更多
关键词 静止无功补偿器 数学模型 改进鸡群算法(ICSO) 敏感度分析 参数辨识
下载PDF
Directional Filter for SAR Images Based on Nonsubsampled Contourlet Transform and Immune Clonal Selection 被引量:3
2
作者 Xiao-Hui Yang Li-Cheng Jiao Deng-Feng Li 《International Journal of Automation and computing》 EI 2009年第3期245-253,共9页
A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly foc... A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes. 展开更多
关键词 Directional filter nonsubsampled contourlet transform (NSCT) immune clonal selection optimization (ICSO) syntheticaperture radar (SAR).
下载PDF
A novel stacking-based ensemble learning model for drilling efficiency prediction in earth-rock excavation 被引量:1
3
作者 Fei LV Jia YU +3 位作者 Jun ZHANG Peng YU Da-wei TONG Bin-ping WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第12期1027-1046,共20页
Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity an... Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity and overfitting.In addition,the influence of environmental and operational factors is often ignored.In response,a novel stacking-based ensemble learning method taking into account the combined effects of those factors is proposed.Through multiple comparison tests,four models,e Xtreme gradient boosting(XGBoost),random forest(RF),back propagation neural network(BPNN)as the base learners,and support vector regression(SVR)as the meta-learner,are selected for stacking.Furthermore,an improved cuckoo search optimization(ICSO)algorithm is developed for hyper-parameter optimization of the ensemble model.The application to a real-world project demonstrates that the proposed method outperforms the popular single ML method XGBoost and the ensemble model optimized by particle swarm optimization(PSO),with 16.43%and 4.88%improvements of mean absolute percentage error(MAPE),respectively. 展开更多
关键词 Drilling efficiency PREDICTION Earth-rock excavation Stacking-based ensemble learning Improved cuckoo search optimization(ICSO)algorithm Comprehensive effects of various factors Hyper-parameter optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部