To realize delegation between different users in a mixed cryptosystem,a proxy signature scheme for ID-based original signers and certificated-based proxy signers(PSS-ID-CER)is defined.Using the bilinear properties o...To realize delegation between different users in a mixed cryptosystem,a proxy signature scheme for ID-based original signers and certificated-based proxy signers(PSS-ID-CER)is defined.Using the bilinear properties of the pairings and the characters of key generations of certificate-based cryptosystems and ID-based cryptosystems,a construction for such a scheme is also presented.To prove the security of the proposed scheme,a general security model for this scheme under adaptive chosen-PKG,chosen-ID,chosen-delegation,chosen-ProxySigner-public-key,chosen-proxy-key and chosen-message attack is defined.The proposed scheme is provably secure under the random oracle model and the hardness assumption of computational Diffie-Hellman problem.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any mod...In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.展开更多
The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography ...The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography can eliminate much of the overhead associated with the deployment and management of certificate.However,exposure of private keys can be the most devastating attack on a public key based cryptosystem since such that all security guarantees are lost.In this paper,an ID-based authenticated key agreement protocol was presented.For solving the problem of key exposure of the basic scheme,the technique of key insulation was applied and a key insulated version is developed.展开更多
ID-based public key cryptosystem can be a good alternative for certifieate-based public key setting. This paper provides an efficient ID-based proxy multi signature scheme from pairings. In the random oracle model, we...ID-based public key cryptosystem can be a good alternative for certifieate-based public key setting. This paper provides an efficient ID-based proxy multi signature scheme from pairings. In the random oracle model, we prove that our new scheme is secure against existential delegation forgery with the assumption that Hess's scheme-1 is existential unforgeable, and that our new scheme is secure against existential proxy multi-signature forgery under the hardness assumption of the computational Diffie-Hellman problem.展开更多
Identity-based proxy signature enables an entity to delegate its signing rights to another entity in identity-based cryptosystem settings. However, few existing scheme has been proved secure in a formalized model, or ...Identity-based proxy signature enables an entity to delegate its signing rights to another entity in identity-based cryptosystem settings. However, few existing scheme has been proved secure in a formalized model, or acquired optimized performance. To achieve the goals of both proven security and high efficiency, this paper proposed an efficient identity-based proxy signature scheme. The scheme is constructed from bilinear pairing and proved secure in the random oracle model, using the oracle replay attack technique introduced by Pointehval and Stern. The analysis shows that the scheme needs less computation costs and has a shorter signature than the other schemes.展开更多
In the last couple of years, D-based cryptography has got fruitful achievements. Proxy multi-signature allows a designated person, called a proxy signer, to sign on behalf of two or more original signers. In this pape...In the last couple of years, D-based cryptography has got fruitful achievements. Proxy multi-signature allows a designated person, called a proxy signer, to sign on behalf of two or more original signers. In this paper, we present a general security model for ID-based proxy multi-signature (ID-PMS) schemes. Then, we show how to construct a secure ID-PMS scheme from a secure ID-based signature scheme, and prove that the security of the construction can be reduced to the security of the original ID-based signature scheme.展开更多
Two ID-based authenticated group key agreement schemes, proposed by Choi et al and Du et al, are insecure against an impersonation attack and th ey only discussed the static group. This paper proposed a variant of BD ...Two ID-based authenticated group key agreement schemes, proposed by Choi et al and Du et al, are insecure against an impersonation attack and th ey only discussed the static group. This paper proposed a variant of BD protocol , which is fully authenticated by a proven-secure ID-based signature scheme. T he protocol can res ist the impersonation attack, and other security attributes are also satisfied. Compared with Choi et al and Du et al schemes, the proposed one is mor e efficient and applicable for dynamic groups.展开更多
Peer-to-peer computing has recently started to gain significant acceptance, since it can greatly increase the performance and reliability of overall system. However, the security issue is still a major gating factor f...Peer-to-peer computing has recently started to gain significant acceptance, since it can greatly increase the performance and reliability of overall system. However, the security issue is still a major gating factor for its full adoption. In order to guarantee the security of data exchanged between two peers in Peer-to-Peer system, this paper comes up with an ID-based authenticated key agreement from bilinear pairings and uses BAN logic to prove the protocol’s security. Compared with other existing protocols, the proposed protocol seems more secure and efficient, since it adopts the static shared Diffie-Hellman key.展开更多
Key escrow is an inherent disadvantage for traditional ID-based cryptosystem, i.e., the dishonest private key generator (PKG) can forge the signature of any user, meanwhile, the user can deny the signature actually si...Key escrow is an inherent disadvantage for traditional ID-based cryptosystem, i.e., the dishonest private key generator (PKG) can forge the signature of any user, meanwhile, the user can deny the signature actually signed by him/herself. To avoid the keyescrow problem, an ID-based signature scheme was presented without trusted PKG. The exact proof of security was presented to demonstrate that our scheme is secure against existential forgery on adaptively chosen message and ID attacks assuming the complexity of computational Diffie-Hellman (CDH) problem. Compared with other signature schemes, the proposed scheme is more efficient.展开更多
In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with...In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.展开更多
Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare appl...Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare applications.In this study,a strong cryptosystem based on a 2D chaotic map and Jigsaw transformation is presented for the encryption of medical photos in private Internet of Medical Things(IoMT)and cloud storage.A disorganized three-dimensional map is the foundation of the proposed cipher.The dispersion of pixel values and the permutation of their places in this map are accomplished using a nonlinear encoding process.The suggested cryptosystem enhances the security of the delivered medical images by performing many operations.To validate the efficiency of the recommended cryptosystem,various medical image kinds are used,each with its unique characteristics.Several measures are used to evaluate the proposed cryptosystem,which all support its robust security.The simulation results confirm the supplied cryptosystem’s secrecy.Furthermore,it provides strong robustness and suggested protection standards for cloud service applications,healthcare,and IoMT.It is seen that the proposed 3D chaotic cryptosystem obtains an average entropy of 7.9998,which is near its most excellent value of 8,and a typical NPCR value of 99.62%,which is also near its extreme value of 99.60%.Moreover,the recommended cryptosystem outperforms conventional security systems across the test assessment criteria.展开更多
The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous res...The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous research results. Then we prove the security of LWE public key cryptosystem by Regev in detail. For not only independent identical Gaussian disturbances but also any general independent identical disturbances, we give a more accurate estimation probability of decryption error of general LWE cryptosystem. This guarantees high security and widespread applications of the LWE public key cryptosystem.展开更多
基金The National Natural Science Foundation of China(No.60473028)the Natural Science Foundation of Zhengzhou University of Light Industry(No.2006XXJ18)the Doctor Foundation of Zhengzhou University of Light Industry(No.20080014)
文摘To realize delegation between different users in a mixed cryptosystem,a proxy signature scheme for ID-based original signers and certificated-based proxy signers(PSS-ID-CER)is defined.Using the bilinear properties of the pairings and the characters of key generations of certificate-based cryptosystems and ID-based cryptosystems,a construction for such a scheme is also presented.To prove the security of the proposed scheme,a general security model for this scheme under adaptive chosen-PKG,chosen-ID,chosen-delegation,chosen-ProxySigner-public-key,chosen-proxy-key and chosen-message attack is defined.The proposed scheme is provably secure under the random oracle model and the hardness assumption of computational Diffie-Hellman problem.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
文摘In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.
文摘The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography can eliminate much of the overhead associated with the deployment and management of certificate.However,exposure of private keys can be the most devastating attack on a public key based cryptosystem since such that all security guarantees are lost.In this paper,an ID-based authenticated key agreement protocol was presented.For solving the problem of key exposure of the basic scheme,the technique of key insulation was applied and a key insulated version is developed.
基金Supported bythe National Key Basic Research andDevelopment Program (973 Program G1999035804),the NationalNatural Science Foundation of China (90204015 ,60473021) and theElitist Youth Foundation of Henan Province (021201400)
文摘ID-based public key cryptosystem can be a good alternative for certifieate-based public key setting. This paper provides an efficient ID-based proxy multi signature scheme from pairings. In the random oracle model, we prove that our new scheme is secure against existential delegation forgery with the assumption that Hess's scheme-1 is existential unforgeable, and that our new scheme is secure against existential proxy multi-signature forgery under the hardness assumption of the computational Diffie-Hellman problem.
基金National Natural Science Foundation of Chi-na for Distinguished Young Scholars (No.60225007)National Research Fund for theDoctoral Program of Higher Education ofChina (No.20020248024)Grant-in-Aid forScientific Research(C) (No.14540100)
文摘Identity-based proxy signature enables an entity to delegate its signing rights to another entity in identity-based cryptosystem settings. However, few existing scheme has been proved secure in a formalized model, or acquired optimized performance. To achieve the goals of both proven security and high efficiency, this paper proposed an efficient identity-based proxy signature scheme. The scheme is constructed from bilinear pairing and proved secure in the random oracle model, using the oracle replay attack technique introduced by Pointehval and Stern. The analysis shows that the scheme needs less computation costs and has a shorter signature than the other schemes.
基金Supported by the National Natural Science Foundation of China (60473021) and the Science Foundation of Henan Province (0511010900)
文摘In the last couple of years, D-based cryptography has got fruitful achievements. Proxy multi-signature allows a designated person, called a proxy signer, to sign on behalf of two or more original signers. In this paper, we present a general security model for ID-based proxy multi-signature (ID-PMS) schemes. Then, we show how to construct a secure ID-PMS scheme from a secure ID-based signature scheme, and prove that the security of the construction can be reduced to the security of the original ID-based signature scheme.
文摘Two ID-based authenticated group key agreement schemes, proposed by Choi et al and Du et al, are insecure against an impersonation attack and th ey only discussed the static group. This paper proposed a variant of BD protocol , which is fully authenticated by a proven-secure ID-based signature scheme. T he protocol can res ist the impersonation attack, and other security attributes are also satisfied. Compared with Choi et al and Du et al schemes, the proposed one is mor e efficient and applicable for dynamic groups.
文摘Peer-to-peer computing has recently started to gain significant acceptance, since it can greatly increase the performance and reliability of overall system. However, the security issue is still a major gating factor for its full adoption. In order to guarantee the security of data exchanged between two peers in Peer-to-Peer system, this paper comes up with an ID-based authenticated key agreement from bilinear pairings and uses BAN logic to prove the protocol’s security. Compared with other existing protocols, the proposed protocol seems more secure and efficient, since it adopts the static shared Diffie-Hellman key.
文摘Key escrow is an inherent disadvantage for traditional ID-based cryptosystem, i.e., the dishonest private key generator (PKG) can forge the signature of any user, meanwhile, the user can deny the signature actually signed by him/herself. To avoid the keyescrow problem, an ID-based signature scheme was presented without trusted PKG. The exact proof of security was presented to demonstrate that our scheme is secure against existential forgery on adaptively chosen message and ID attacks assuming the complexity of computational Diffie-Hellman (CDH) problem. Compared with other signature schemes, the proposed scheme is more efficient.
基金funded by the Center for Research Excellence,Incubation Management Center,Universiti Sultan Zainal Abidin via an internal grant UniSZA/2021/SRGSIC/07.
文摘In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.
基金The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code(NU/RC/SERC/11/5).
文摘Image encryption has attracted much interest as a robust security solution for preventing unauthorized access to critical image data.Medical picture encryption is a crucial step in many cloud-based and healthcare applications.In this study,a strong cryptosystem based on a 2D chaotic map and Jigsaw transformation is presented for the encryption of medical photos in private Internet of Medical Things(IoMT)and cloud storage.A disorganized three-dimensional map is the foundation of the proposed cipher.The dispersion of pixel values and the permutation of their places in this map are accomplished using a nonlinear encoding process.The suggested cryptosystem enhances the security of the delivered medical images by performing many operations.To validate the efficiency of the recommended cryptosystem,various medical image kinds are used,each with its unique characteristics.Several measures are used to evaluate the proposed cryptosystem,which all support its robust security.The simulation results confirm the supplied cryptosystem’s secrecy.Furthermore,it provides strong robustness and suggested protection standards for cloud service applications,healthcare,and IoMT.It is seen that the proposed 3D chaotic cryptosystem obtains an average entropy of 7.9998,which is near its most excellent value of 8,and a typical NPCR value of 99.62%,which is also near its extreme value of 99.60%.Moreover,the recommended cryptosystem outperforms conventional security systems across the test assessment criteria.
文摘The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous research results. Then we prove the security of LWE public key cryptosystem by Regev in detail. For not only independent identical Gaussian disturbances but also any general independent identical disturbances, we give a more accurate estimation probability of decryption error of general LWE cryptosystem. This guarantees high security and widespread applications of the LWE public key cryptosystem.