This paper proposes a modification to distributed coordination function (DCF) to improve the channel utilization in IEEE 802.11 wireless local area networks ( WLANs). In the modified DCF, when a station has conten...This paper proposes a modification to distributed coordination function (DCF) to improve the channel utilization in IEEE 802.11 wireless local area networks ( WLANs). In the modified DCF, when a station has contended for the channel, it may transmit multiple data frames continuously to the same destination, which is called transmission burst(TB). When the maximum number of data packets transmitted continuously in a TB is set to be 2, the performance is expected to be the best. The theoretical analysis and simulation results show that compared with the standard DCF, the modified DCF can increase the throughput and decrease the delay of the WLAN, and the modification does not introduce any additional control overhead.展开更多
This paper proposes a new channel access algorithm based on channel occupancy time (COT) fairness to guarantee fairness and improve the aggregate throughput of 802.11b multi-rate WLANs. In the algorithm, the COT is ...This paper proposes a new channel access algorithm based on channel occupancy time (COT) fairness to guarantee fairness and improve the aggregate throughput of 802.11b multi-rate WLANs. In the algorithm, the COT is used as fairness index to analyze the fairness of WLANs instead of the channel access probability (CAP) used in the distributed coordination function (DCF). The standard COT is given by access point (AP) and broadcasted to all wireless stations. The AP and wireless stations in the WLAN can achieve COT-based fairness by adjusting their packet length, sending the multiple back-to-back packets at one time, or giving up an opportunity to access the channel. Analysis and simulations show that our algorithm can provide COT-fairness. Compared with the CAP-based algorithm, the proposed algorithm leads to improvements in aggregate throughput of IEEE 802. lib multi-rate WLANs.展开更多
This paper explores and compares FER (Frame Error Rate) of a MAC (Medium Access Control) layer in the IEEE 802.11 a/g/n wireless LAN. It is evaluated under the fading wireless channel, using theoretical analysis metho...This paper explores and compares FER (Frame Error Rate) of a MAC (Medium Access Control) layer in the IEEE 802.11 a/g/n wireless LAN. It is evaluated under the fading wireless channel, using theoretical analysis method. It is analyzed by using the number of stations with both variable payload size and mobile speed on the condition that fading margin and transmission probability are fixed. Especially, in the IEEE 802.11n, A-MSDU (MAC Service Data Unit Aggregation) scheme is considered and the number of subframe is used as the variable parameter. In the IEEE802.11a/g wireless LAN, fixed wireless channel is assumed to be Rayleigh fading channel. Mobile wireless channel is assumed to be flat fading Rayleigh channel with Jake spectrum. The channel is in fading states or inter-fading states by evaluating a certain threshold value of received signal power level. If and only if the whole frame is in inter-fading state, there is the successful frame transmission. If any part of frame is in fading duration, the frame is received in error.展开更多
A comprehensive study was presented for WLAN 802.11b using error-prone channel. It was theoretically and numerically evaluated the performance of three different network sizes with the bit rates that available in 802....A comprehensive study was presented for WLAN 802.11b using error-prone channel. It was theoretically and numerically evaluated the performance of three different network sizes with the bit rates that available in 802.11b protocol. Results show that throughput does not change with the size of the network for wide range of bit error rates (BERs) and the channel bit rates play a significant role in the main characteristics of the network. A comprehensive explanation has given for the phenomenon of the packet delay suppression at relatively high level of BERs in view of the size of the networks and the BERs. The effect length of the transmitting packets is also investigated.展开更多
Due to their easy-to-deploy and self-healing features, WMNs (Wireless Mesh Networks) are emerging as a new promising technology with a rich set of applications. While the IEEE standardization of this new technology is...Due to their easy-to-deploy and self-healing features, WMNs (Wireless Mesh Networks) are emerging as a new promising technology with a rich set of applications. While the IEEE standardization of this new technology is still in progress, its main traits are already set, e.g., architecture and MAC routing. WMNs are attracting considerable research in academia and industry as well, but the lack of open-source testbeds is restricting such a research to simulation tools. The main problem with simulation tools is that they do not reflect the complexity of RF propagation, especially in indoor environments, of which IEEE 802.11s WMNs are an example. This paper presents an open-source implementation of an indoor IEEE 802.11s WMN testbed. The implementation is transparent, easy-to-deploy, and both the source code and deployment instructions are available online. The implementation can serve as a blueprint for the WMN research community to deploy their own testbeds, negating the shortcomings of using simulation tools. By delving into the testbed implementation subtleties, this paper is shedding further light on the details of the ongoing IEEE 802.11s standard. Major encountered implementation problems (e.g., clients association, Internetworking, and supporting multiple gateways) are identified and addressed. To ascertain the functionality of the testbed, both UDP and TCP traffic are supported and operational. The testbed uses the default IEEE 802.11s HWMP (Hybrid Wireless Mesh Protocol) routing protocol along with the default IEEE 802.11s Airtime routing metric.展开更多
The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameter...The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameters, when the number of stations increases, the probability of different stations in the same AC choosing the same values will increase, which will result in collisions. Random adaptive MAC (medium access control) parameters scheme (RAMPS) is proposed, which uses random adaptive MAC differentiation parameters instead of the static ones used in the 802.11e standard. The performance of RAMPS is compared with that of enhanced distributed coordination access (EDCA) using NS2. The results show that RAMPS can reduce collision rate of the AC and improve the throughput by using adaptive random contention window size and inter-frame spacing values. RAMPS ensures that at any given time, several flows of the same priority have different MAC parameter values. By using the random offset for the inter-frame spacing value and the backoff time, RAMPS can provide intra-AC differentiation. The simulation results show that RAMPS outperforms EDCA in terms of both throughput and end-to-end delay irrespective of the traffic load.展开更多
In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contendi...In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contending stations considered in the network. This paper proposes a simple but accurate method to dynamically estimate the number of contending stations in a wireless local area network ( WLAN ). Based on estimation, all the mobile stations dynamically adjust the initial contention window in medium access control ( MAC ) layer to avoid collisions. The simulation results show that the proposed algorithm can achieve efficient channel utilization, higher system throughput, and better fairness performance.展开更多
基金Supported by National Natural Science Foundation of China (No. 60472078 and No. 90604013).
文摘This paper proposes a modification to distributed coordination function (DCF) to improve the channel utilization in IEEE 802.11 wireless local area networks ( WLANs). In the modified DCF, when a station has contended for the channel, it may transmit multiple data frames continuously to the same destination, which is called transmission burst(TB). When the maximum number of data packets transmitted continuously in a TB is set to be 2, the performance is expected to be the best. The theoretical analysis and simulation results show that compared with the standard DCF, the modified DCF can increase the throughput and decrease the delay of the WLAN, and the modification does not introduce any additional control overhead.
基金Supported by National Natural Science Foundation of China (No.60472078 and No.90604013) .
文摘This paper proposes a new channel access algorithm based on channel occupancy time (COT) fairness to guarantee fairness and improve the aggregate throughput of 802.11b multi-rate WLANs. In the algorithm, the COT is used as fairness index to analyze the fairness of WLANs instead of the channel access probability (CAP) used in the distributed coordination function (DCF). The standard COT is given by access point (AP) and broadcasted to all wireless stations. The AP and wireless stations in the WLAN can achieve COT-based fairness by adjusting their packet length, sending the multiple back-to-back packets at one time, or giving up an opportunity to access the channel. Analysis and simulations show that our algorithm can provide COT-fairness. Compared with the CAP-based algorithm, the proposed algorithm leads to improvements in aggregate throughput of IEEE 802. lib multi-rate WLANs.
文摘This paper explores and compares FER (Frame Error Rate) of a MAC (Medium Access Control) layer in the IEEE 802.11 a/g/n wireless LAN. It is evaluated under the fading wireless channel, using theoretical analysis method. It is analyzed by using the number of stations with both variable payload size and mobile speed on the condition that fading margin and transmission probability are fixed. Especially, in the IEEE 802.11n, A-MSDU (MAC Service Data Unit Aggregation) scheme is considered and the number of subframe is used as the variable parameter. In the IEEE802.11a/g wireless LAN, fixed wireless channel is assumed to be Rayleigh fading channel. Mobile wireless channel is assumed to be flat fading Rayleigh channel with Jake spectrum. The channel is in fading states or inter-fading states by evaluating a certain threshold value of received signal power level. If and only if the whole frame is in inter-fading state, there is the successful frame transmission. If any part of frame is in fading duration, the frame is received in error.
文摘A comprehensive study was presented for WLAN 802.11b using error-prone channel. It was theoretically and numerically evaluated the performance of three different network sizes with the bit rates that available in 802.11b protocol. Results show that throughput does not change with the size of the network for wide range of bit error rates (BERs) and the channel bit rates play a significant role in the main characteristics of the network. A comprehensive explanation has given for the phenomenon of the packet delay suppression at relatively high level of BERs in view of the size of the networks and the BERs. The effect length of the transmitting packets is also investigated.
文摘Due to their easy-to-deploy and self-healing features, WMNs (Wireless Mesh Networks) are emerging as a new promising technology with a rich set of applications. While the IEEE standardization of this new technology is still in progress, its main traits are already set, e.g., architecture and MAC routing. WMNs are attracting considerable research in academia and industry as well, but the lack of open-source testbeds is restricting such a research to simulation tools. The main problem with simulation tools is that they do not reflect the complexity of RF propagation, especially in indoor environments, of which IEEE 802.11s WMNs are an example. This paper presents an open-source implementation of an indoor IEEE 802.11s WMN testbed. The implementation is transparent, easy-to-deploy, and both the source code and deployment instructions are available online. The implementation can serve as a blueprint for the WMN research community to deploy their own testbeds, negating the shortcomings of using simulation tools. By delving into the testbed implementation subtleties, this paper is shedding further light on the details of the ongoing IEEE 802.11s standard. Major encountered implementation problems (e.g., clients association, Internetworking, and supporting multiple gateways) are identified and addressed. To ascertain the functionality of the testbed, both UDP and TCP traffic are supported and operational. The testbed uses the default IEEE 802.11s HWMP (Hybrid Wireless Mesh Protocol) routing protocol along with the default IEEE 802.11s Airtime routing metric.
基金Project(60673164) supported by the National Natural Science Foundation of ChinaProject(06JJ10009) supported by the Natural Science Foundation of Hunan Province, China+2 种基金Project(20060533057) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2008CB317107) supported by the Major State Basic Research and Development Program of ChinaProject(NCET-05-0683) supported by the Program for New Century Excellent Talents in University
文摘The IEEE 802.11e standard is proposed to provide QoS support in WLAN by providing prioritized differentiation of traffic. Since all the stations in the same priority access category (AC) have the same set of parameters, when the number of stations increases, the probability of different stations in the same AC choosing the same values will increase, which will result in collisions. Random adaptive MAC (medium access control) parameters scheme (RAMPS) is proposed, which uses random adaptive MAC differentiation parameters instead of the static ones used in the 802.11e standard. The performance of RAMPS is compared with that of enhanced distributed coordination access (EDCA) using NS2. The results show that RAMPS can reduce collision rate of the AC and improve the throughput by using adaptive random contention window size and inter-frame spacing values. RAMPS ensures that at any given time, several flows of the same priority have different MAC parameter values. By using the random offset for the inter-frame spacing value and the backoff time, RAMPS can provide intra-AC differentiation. The simulation results show that RAMPS outperforms EDCA in terms of both throughput and end-to-end delay irrespective of the traffic load.
基金Supported by National Natural Science Foundation of China ( No. 60472078) , and Cisco University Research Program Fund at Community Foundation Silicon Valley( No. 20029303 ).
文摘In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contending stations considered in the network. This paper proposes a simple but accurate method to dynamically estimate the number of contending stations in a wireless local area network ( WLAN ). Based on estimation, all the mobile stations dynamically adjust the initial contention window in medium access control ( MAC ) layer to avoid collisions. The simulation results show that the proposed algorithm can achieve efficient channel utilization, higher system throughput, and better fairness performance.