Mobile stations supporting the 802.11u standard can access WLAN automatically when they are within the coverage of the network service provided by this WLAN. To achieve this goal, the stations need to keep “on” stat...Mobile stations supporting the 802.11u standard can access WLAN automatically when they are within the coverage of the network service provided by this WLAN. To achieve this goal, the stations need to keep “on” states includingidleandactiveall the time. However, studies have noted that the idleness of stations often lead to considerable power consumption. Although the conventional power saving mode (PSM) can provide energy saving effect to some extent, its own disadvantage leads to lower energy efficiency when the number of stations accessing the target WLAN. In this paper, we propose a Schedule-Aware PSM (S-PSM), which can improve the energy efficiency in 802.11u WLAN. Particularly, we use the Generic advertisement service (GAS) defined in 802.11u standard to broadcast the transmission schedule information and all stations switch off their radios based on this information accordingly. We introduce the Respond Contention Window to reduce the collision probability of competition channel. When there is no packet in the access point (AP), AP broadcasts the GAS frame and actives the Idle Timer. All stations will turn into sleep and AP will not send GAS frame until Idle Timer expires. Simulations have shown that our proposed scheme can significantly reduce power consumption compared with the conventional PSM.展开更多
OFDM has been widely adopted in several communication systems. However, OFDM systems are very sensitive to the phase noise, which causes the CPE (common phase error) and ICI (inter-carrier interference), and thus ...OFDM has been widely adopted in several communication systems. However, OFDM systems are very sensitive to the phase noise, which causes the CPE (common phase error) and ICI (inter-carrier interference), and thus degrades the system performance significantly. Based on the IEEE 802.11a standard, a simplified iterative phase noise mitigation algorithm is proposed. The proposed algorithm has very low complexity, and requires no additional pilot information. The simulation result shows that good BER performance can be achieved through several few times of iteration.展开更多
文摘Mobile stations supporting the 802.11u standard can access WLAN automatically when they are within the coverage of the network service provided by this WLAN. To achieve this goal, the stations need to keep “on” states includingidleandactiveall the time. However, studies have noted that the idleness of stations often lead to considerable power consumption. Although the conventional power saving mode (PSM) can provide energy saving effect to some extent, its own disadvantage leads to lower energy efficiency when the number of stations accessing the target WLAN. In this paper, we propose a Schedule-Aware PSM (S-PSM), which can improve the energy efficiency in 802.11u WLAN. Particularly, we use the Generic advertisement service (GAS) defined in 802.11u standard to broadcast the transmission schedule information and all stations switch off their radios based on this information accordingly. We introduce the Respond Contention Window to reduce the collision probability of competition channel. When there is no packet in the access point (AP), AP broadcasts the GAS frame and actives the Idle Timer. All stations will turn into sleep and AP will not send GAS frame until Idle Timer expires. Simulations have shown that our proposed scheme can significantly reduce power consumption compared with the conventional PSM.
文摘OFDM has been widely adopted in several communication systems. However, OFDM systems are very sensitive to the phase noise, which causes the CPE (common phase error) and ICI (inter-carrier interference), and thus degrades the system performance significantly. Based on the IEEE 802.11a standard, a simplified iterative phase noise mitigation algorithm is proposed. The proposed algorithm has very low complexity, and requires no additional pilot information. The simulation result shows that good BER performance can be achieved through several few times of iteration.